首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
admin
2018-09-20
66
问题
A是3阶矩阵,λ
1
,λ
2
,λ
3
是三个不同的特征值,ξ
1
,ξ
2
,ξ
3
是相应的特征向量.证明:向量组A(ξ
1
+ξ
2
),A(ξ
2
+ξ
3
),A(ξ
3
+ξ
1
)线性无关的充要条件是A是可逆矩阵.
选项
答案
A(ξ
1
+ξ
2
),A(ξ
2
+ξ
3
),A(ξ
3
+ξ
1
)线性无关[*]λ
1
ξ
1
+λ
2
ξ
2
,λ
2
ξ
2
+λ
3
ξ
3
,λ
3
ξ
3
+λ
1
ξ
1
线性无关[*][λ
1
ξ
1
+λ
2
ξ
2
,λ
2
ξ
2
+λ
3
ξ
3
,λ
3
ξ
3
+λ
1
ξ
1
]=[ξ
1
,ξ
2
,ξ
3
][*]秩为3 [*]|A|=λ
1
λ
2
λ
3
≠0,A是可逆矩阵(因为ξ
1
,ξ
2
,ξ
3
线性无关,[*]=2λ
1
λ
2
λ
3
≠0).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/pkW4777K
0
考研数学三
相关试题推荐
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=α2+α3=求方程组AX=b的通解.
设,求a,b及正交矩阵P,使得PTAP=B.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(一1,0,1)T.求A的其他特征值与特征向量;
从正态总体X,N(0,σ2)中抽取简单随机样本X1,X2,…,Xn,则可作为参数σ2的无偏估计量的是().
设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:
设f(x)在[a,b]上连续可导,且f(a)=0.证明:∫abf2(x)dx≤∫ab[f’(x)]2dx.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.证明:设α1=求出可由两组向量同时线性表示的向量.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A为三阶实对称矩阵,且存在可逆矩阵又A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量为α=[2,5,一1]T.(1)求λ0的值;(2)计算(A*)一1;(3)计算行列式|A*+E|.
计算行列式Dn=
随机试题
制定计划发展可选方案时,不需要考虑的因素是
女性,35岁。左侧上颌腭侧牙龈出现反复肿胀、出血4个月。口腔检查:腭侧牙龈乳头增生,形成牙龈瘤,探诊易出血,拟手术切除。采用的麻醉方法是
监理工程师受业主委托对物资供应进度进行控制时,其工作内容包括()。
下列各项中,属于货币执行支付手段职能的包括()。
国家预算调整是指经过批准的各级预算,在执行中因情况变化需要增加支出或减少收人,使总支出超过总收人或使原举借债务的数额增加的部分改变。县级以上地方各级政府预算的调整方案必须经过_________的审查和批准。
甲、乙两名运动员在400米的环形跑道上练习跑步,甲出发1分钟后乙同向出发,乙出发2分钟后第一次追上甲,又过了8分钟,乙第二次追上甲。此时乙比甲多跑了250米,问两人出发地相隔多少米?
美洲是一块古老的大陆,长期以来与世隔绝。把它与世界开始联系起来的重大转折时刻是()
以国共两党第二次合作为基础的抗日民族统一战线正式形成的主要标志是()
下列关于路由选择协议相关技术的描述中,错误的是()。
以下程序的输出结果是()。a=3.6e-1b=4.2e3print(b-a)
最新回复
(
0
)