首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
A是3阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
admin
2018-09-20
83
问题
A是3阶矩阵,λ
1
,λ
2
,λ
3
是三个不同的特征值,ξ
1
,ξ
2
,ξ
3
是相应的特征向量.证明:向量组A(ξ
1
+ξ
2
),A(ξ
2
+ξ
3
),A(ξ
3
+ξ
1
)线性无关的充要条件是A是可逆矩阵.
选项
答案
A(ξ
1
+ξ
2
),A(ξ
2
+ξ
3
),A(ξ
3
+ξ
1
)线性无关[*]λ
1
ξ
1
+λ
2
ξ
2
,λ
2
ξ
2
+λ
3
ξ
3
,λ
3
ξ
3
+λ
1
ξ
1
线性无关[*][λ
1
ξ
1
+λ
2
ξ
2
,λ
2
ξ
2
+λ
3
ξ
3
,λ
3
ξ
3
+λ
1
ξ
1
]=[ξ
1
,ξ
2
,ξ
3
][*]秩为3 [*]|A|=λ
1
λ
2
λ
3
≠0,A是可逆矩阵(因为ξ
1
,ξ
2
,ξ
3
线性无关,[*]=2λ
1
λ
2
λ
3
≠0).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/pkW4777K
0
考研数学三
相关试题推荐
设A,B为n阶矩阵,且r(A)+r(B)<n,证明:A,B有公共的特征向量.
设A,B为三阶矩阵,且AB=A一B,若λ1,λ2,λ3为A的三个不同的特征值,证明:存在可逆矩阵P,使得P一1AP,P一1BP同时为对角矩阵.
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
对二元函数z=f(x,y),下列结论正确的是().
设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:
计算二重积分(x2+4x+y2)dxdy,其中D是曲线(x2+y2)2=az(x2一y2)围成的区域.
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:S2=为参数σ2的无偏估计量.
设f(x)在区间[a,b]上满足a≤f(x)≤b,且有|f’(x)|≤q<1,令un=f(un一1)(n=1,2,…),u0∈[a,b],证明:级数(un+1一un)绝对收敛.
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本,证明:都是参数θ的无偏估计量,试比较其有效性.
随机试题
以下选项中叙述正确的是
“下层决策者直接接受某一上层决策者的决策,界限分明,隶属关系严格”的政策制定的内部结构是()
非酮症性高血糖高渗性糖尿病昏迷特点不包括
A.位相变异B.S-R变异C.耐药变异D.H-O变异E.V-W变异菌落由光滑型逐渐变成粗糙型称为
患者,男,2岁。因身材矮小就诊,10个月会坐,近1岁10个月会走,平时少哭多睡,食欲差,常便秘。体检:头大,前囟未闭,乳齿2个,反应较迟钝,喜伸舌,皮肤较粗糙,有脐疝。心肺无特殊发现。对该病例,首先应做的检查是
对妊娠合并心脏病的产妇进行健康指导,内容不正确的是
阿司匹林抑制下列哪种酶而发挥解热镇痛作用( )。
在清偿顺序上位于商业银行其他债务之后,优于股权资本的债券是()。
Threehundredyearsagonewstravelledbywordofmouthorletter,andcirculatedintavernsandcoffeehousesintheformofpa
Inthissection,youwillhearashortpassage.Forquestions21-30,completethenotesusingnomorethanthreewordsforeach
最新回复
(
0
)