首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是n阶实对称矩阵,满足A2一3A+2E=O,且B=A2一2A+3E. (Ⅰ)求B-1; (Ⅱ)证明:B正定.
已知A是n阶实对称矩阵,满足A2一3A+2E=O,且B=A2一2A+3E. (Ⅰ)求B-1; (Ⅱ)证明:B正定.
admin
2022-04-10
111
问题
已知A是n阶实对称矩阵,满足A
2
一3A+2E=O,且B=A
2
一2A+3E.
(Ⅰ)求B
-1
;
(Ⅱ)证明:B正定.
选项
答案
(Ⅰ)由题设A
2
一3A+2E=O, 得 A
2
=3A一2E. 代入B,得 B=A
2
一2A+3E=3A一2E一2A+3E=A+E. 又 A
2
一3A+2E=(A+E)(A一4E)+6E=O, 即 (A+E)[一[*](A一4E)]=E, 得B=A+E可逆,且B
2
=一[*](A一4E). (Ⅱ)[证] 法一 B
T
=(A
2
一2A+3E)
T
=B,B是实对称矩阵. A
2
一3A+2E=O两边右乘A的特征向量ξ,得(λ
2
一3λ+2)ξ=0,又ξ≠0,则λ=1或2.故A的特征值只能取值为1或2.B=A+E的特征值只能取值为2或3,均大于零,故B正定. 法二 B=A
2
一2A+3E=(A—E)
2
+2E,由正定矩阵的定义即得B正定.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/phR4777K
0
考研数学三
相关试题推荐
构造齐次方程组,使得η1=(1,1,0,一1)T,η2=(0,2,1,1)T构成它的基础解系.
设f(t)连续并满足求f(t).
已知三元二次型XTAX经正交变换化为2y12-y22-y32,又知矩阵B满足矩阵方程BA-1=2AB+4E,且A*α=α,其中α=[1,1,-1]T,A*为A的伴随矩阵,求此二次型XTBX的表达式.
设函数z=f(xy)+yφ(x+y),其中函数f、φ具有连续的二阶导数,求二阶混合偏导数.
设求矩阵A可对角化的概率.
设m×m矩阵A的秩为r,且r<m,已知向量η是非齐次线性方程组Ax=b的一个解。试证:方程组Ax=b存在n一r+1个线性无关的解,而且这n一r+1个解可以线性表示方程组Ax=b的任一解。
计算二重积分其中D是由x2+y2=1的上半圆与x2+y2=2y的下半圆围成的区域.
某工厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时,总收益函数为R(x,y)=42x+27y—4x2—2xy—y2,总成本函数为C(x,y)=36+8x+12y(单位:万元).除此之外,生产甲、乙两种产品每吨还需分别支付排污费2万元、l
随机试题
戏曲《长生殿》的作者是洪异。()
易伴发感染性休克的感染性疾病是
女性保健的内容不包括
下列( )属于现代企业制度的特征。
在潮湿场所及触电危险性较大的环境,安全电压为()。
道路工程施工时,路堤填料优先采用()。[2007年、2012年真题]
某客户在2013年1月1日存入一笔10000元两年期整存整取定期存款,假设年利率为3.75%,按单利计算,两年后存款到期时,他从银行取回的全部金额是()元。
区分事物发展过程中量变和质变的根本标志是()。
依次填入下列各句横线处的词语,恰当的一组是______。①每一天,每个人都______在一系列数字里,BP机号码、子机号码、电脑号码、信用卡密码、股东代码……我们生活的每一步其实都是一次数字的输入和转换过程,数字确立了我们的生活秩序。②今年
Bymeansofdreams,thehumansubconsciousissendingimportantmessagestotheconsciousmind.Researchesonthebiologyofdr
最新回复
(
0
)