首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
admin
2018-04-18
81
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,c∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξ∈(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
<…<a
n
. [*] 构造辅助函数φ(x)=f(x)-k(x-a
1
)(x-a
2
)…(x-a
n
),显然φ(x)在[a
1
,a
n
]上n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0, 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),…,ξ
n
(1)
∈(a
n-1
,a
n
),使得φ’(ξ
1
(1)
)=φ’(ξ
2
(1)
)=…=φ’(ξ
n
(1)
)=0,φ’(x)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则 φ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
2
),使得 φ
(n-1)
(c
1
)=φ
(n-1)
(c
2
)=0, 再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
2
),使得φ
(n)
(ξ)=0. 而φ
(n)
(x)=f
(n)
(x)-n!k,所以f
(n)
(ξ)=n!k,从而有 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/otk4777K
0
考研数学二
相关试题推荐
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是
求微分方程y〞+5yˊ+6y=2e-x的通解.
设函数f(x)在[0,1]上连续,(0,1)内可导,且证明在(0,1)内存在一点,使fˊ﹙C﹚=0.
若f(x)的导函数是sinx,则f(x)有一个原函数为().
设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=__________.
曲线的切线与x轴和y轴围成一个图形,记切点的横坐标为α.试求切线方程和这个图形的面积.当切点沿曲线趋于无穷远时,该面积的变化趋势如何?
设a1=2,an+1=1/2(an+1/an)(n=1,2,…),证明存在,并求出数列的极限.
(2008年试题,22)设n元线性方程组Ax=b,其中(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
用变量代换x=cost(0<t<π)化简微分方程(1-x2)y"-xy’+y=0,并求其满足的特解.
设f(x)和φ(x)在(-∞,+∞)上有定义,f(x)为连续函数,且,(φ)≠0,f(x)有间断点,则
随机试题
Thirtyyearsago,whenChristianBoerwasfirstlearninghowtoreadwhilegrowingupintheNetherlands,hemadealotofmista
对于软组织损伤的治疗原则,下列哪项不恰当
A.法律B.行政法规C.部门规章D.地方性法规《药品管理法》属于
患儿,10个月。因发热、呕吐、惊厥来就诊。确诊为化脓性脑膜炎。本病最容易出现的并发症为
中同注册会计师协会是依据《注册会计师法》和《礼会团体登记条例》的有关规定设立的社会团体法人,是中国注册会计师行业的自律管理组织,成立于1988年11月。()
最重要的征信制度法规是()。
某矿山机械厂小批量生产矿山机械设备,采用分批法计算产品成本。201×年10月有关成本计算资料如下所示。(1)产量记录(台):(2)以前月份发生费用:(3)本月两批产品共同发生间接费用:原材料费用12500元
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
在计算机中,每个存储单元都有一个连续的编号,此编号称为()。
微型计算机硬件系统中最核心的部位是()。
最新回复
(
0
)