首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2000年试题,八)设函f(x)在[0,π]上连续,且试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
(2000年试题,八)设函f(x)在[0,π]上连续,且试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
admin
2014-08-19
87
问题
(2000年试题,八)设函f(x)在[0,π]上连续,且
试证明:在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
2
)=0.
选项
答案
由题设,引入变上限定积分形式的辅助函数[*]则由已知条件知F(π)=0=F(0),此外,由[*],有[*]即[*]则由积分中值定理知存在ξ∈(0,π),使得F(ξ)sinξ=0.又当ξ∈(0,π)时,sinξ≠0,所以F(ξ)=0.由此知F(0)=F(ξ)=F(π)=0,0<ξ<π,对F(x)在区间[0,ξ]和[ξ,π]上分别应用罗尔定理,则至少存在ξ
1
∈(0,ξ)和ξ
2
∈(ξ,π),使得F(ξ
1
)=f
’
(ξ
2
)=0,此即f(ξ
1
)=f(ξ
2
)=0,[评注]也可直接由已知条件[*],应用积分中值定理,则存在ξ
1
∈(0,π),使得[*]即f(ξ
1
)=0,其中0<ξ
1
<π.假设(0,π)内仅有一个点ξ
1
,使f(ξ
1
)=0,则由[*]可知f(x)在(0,ξ
1
)内与(ξ
2
,π)异号,不失一般性,设(0,ξ
1
)内f(x)>0,从而(ξ
1
,π)内f(x)<0,结合另一已知条件[*]及cosx在[0,π]上的单调性,有[*][*]此为矛盾,因此假设不成立,必至少存在另一点ξ
2
∈(0,π)且ξ
2
≠ξ
1
,使得f(ξ
2
)=0,至此,原命题同样得证.证明价值性问题,往往用中值定理,证明f(x)有k个零点的一个有效方法是证明它的原函数有k+1个零点.注意[*]为f(x)的一个特殊的原函数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ok34777K
0
考研数学二
相关试题推荐
下列无穷小中阶数最高的是()。
在区间(0,2)上随机取一点,将该区间分成两段,较短的一段长度记为X,较长的一段长度记为Y,令Z=Y/X.求Z的概率密度;
设函数y=y(x)满足(1)求解y(x);(2)已知存在,求y0的值,并求极限。
设A为3阶实对称矩阵,已知|A|=-12,A的三个特征值之和为1,又α=(1,0,-2)T是齐次线性方程组(A*-4E)X=0的一个解向量。(1)求矩阵A;(2)求方程组(A*+6E)X=0的通解。
设函数f(x)在区间[0,1]上二阶可导,f(0)=0,且f(1)=1,证明:(1)存在x0∈(0,1),使得f’(x0)=1;(2)存在ζ∈(0,1),使得ζf”(ζ)+(1+ζ)f’(ζ)=1+ζ。
设D是由直线y=x+3,y=(x/2)-(5/2),y=π/2及y=-π/2所围成的平面区域,则二重积分=________。
设曲线y=y(x)上任意一点的切线在y轴上的截距与法线在x轴上的截距之比为3,求y(x).
曲线共有__________条渐近线.
设曲线yn(x)=xn-x(n=2,3,4…)在区间[0,+∞)上与x轴所围无界区域的面积为S(n).
设矩阵A=若集合Ω={1,2),则线性方程组Ax=b有无穷多解的充分必要条件为
随机试题
女性,19岁,为右上肺浸润型肺结核空洞病人,3h前突然大咯血不止。其治疗措施应为()
男性,2岁,诊断为“左侧隐睾”。最好治疗方案为
传染病构成传染的最基本因素是
腧穴主治少腹痛,腰脊痛引睾丸,耳聋,目黄,颊肿肩臂外侧后缘痛等的经脉是
下列有关债务重组时债务人会计处理的表述中,错误的有( )。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
假定其他条件不变,税收增加将引起国民收入()。
曲线的渐近方程为________.
我国大陆地区目前广泛使用的汉字编码国家标准有【43】和GB18030两种,常用汉字采用【44】个字节表示。
Completethetablebelow.WriteONEWORDAND/ORANUMBERforeachanswer.
最新回复
(
0
)