首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件 是A*b=0.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件 是A*b=0.
admin
2018-01-23
55
问题
设A为n阶矩阵,A
11
≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件
是A
*
b=0.
选项
答案
设非齐次线性方程组AX=b有无穷多个解,则r(A)<n,从而|A|=0, 于是A
*
b=A
*
AX=|A|X=0. 反之,设A
*
b=0,因为b≠0,所以方程组A
*
X=0有非零解,从而r(A
*
)<n,又A
11
≠ 0,所以r(A
*
)=1,且r(A)=n-1. 因为r(A
*
)=1,所以方程组A
*
X=0的基础解系含有n-1个线性无关的解向量,而 A
*
A=0,所以A的列向量组α
1
,α
2
,…,α
n
为方程组A
*
X=0的一组解向量. 由A
11
≠0,得α
2
,…,α
n
线性无关,所以α
2
,…,α
n
是方程组A
*
X=0的基础解系. 因为A
*
b=0,所以b可由α
2
,…,α
n
线性表示,也可由α
1
,α
2
,…,α
n
线性表示,故r(A)= [*]=n-1<n,即方程组AX=b有无穷多个解.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ofX4777K
0
考研数学三
相关试题推荐
微分方程y’’一2y’+2y=ex的通解为__________.
设72阶方阵A、B、C满足关系式ABC=E,其中E为n阶单位矩阵,则必有【】
为了实现利润最大化,厂商需要对某商品确定其定价模型.设Q为该商品的需求量,P为价格,MC为边际成本.η为需求弹性(η>0).证明定价模型为
证明
设f(x)、g(x)在区间[一a,a](a>0)上连续.g(x)为偶函数,且f(x)满足条件f(x)+f(一x)=A(A为常数)(1)证明(2)利用(1)的结论计算定积分
证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a).
设A,B,C均为竹阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B一C为【】
已知3阶矩阵A与3维向量x,使得向量组x,Ax,A2x线性无关.且满足A3x=3Ax一2A2x.计算行列式∣A+E∣.
设函数f(x)在[0,1]上连续.在开区间(0,1)内大于零,并且满足又曲线y=f(x)与x=1,y=0所围的图形s的面积值为2,求函数y=f(x),并问a为何值时.图形S绕x轴旋转一周所得旋转体的体积最小.
已知三阶方阵A,B满足关系式E+B=AB,A的三个特征值分别为3,一3,0,则|B-1+2E|=___________.
随机试题
下列叙述中,错误的是()。
面的烹调方法为煮、烙、蒸、炸等,_______的营养素损失较少。
女,15岁,凸面型,鼻唇角小,面下1/3长,磨牙中性关系,尖牙远中关系,前牙Ⅲ度深覆牙合,覆盖6mm,上颌前牙段拥挤4mm,下颌前牙段拥挤6mm,ANB5.5度
男,38岁,右上腹疼痛、寒战、高热、黄疸1天。查体:体温39.6℃,血压83/60mmHg。皮肤巩膜黄染,右上腹及剑突下压痛,可及肿大胆囊,血白细胞26×109/L。诊断为
甲集团是ABC会计师事务所的常年审计客户。A注册会计师负责审计甲集团2018年度财务报表,确定财务报表整体的重要性为200万元。 资料一: (1)甲集团利用ERP系统核算应收账款,在以前年度,利用ERP系统之外的Q软件手工输入相关数据后进行应收账款账龄
一般资料:求助者,女性,26岁,未婚,硕士研究生学历,公司职员。案例介绍:求助者父亲在春节时突发心脏病去世,求助者非常痛苦,久久不能摆脱。近来经常有不安感,害怕自己或母亲也有什么不幸,为此生活中总是小心翼翼,就连乘车时都担心发生车祸。因担心安全,多次婉拒
教师劳动的复杂性主要是由_____决定的。【】
DanielleSteel,America’ssweetheart,isoneofthehardestworkingwomeninthebookbusiness.Unlikeotherproductiveauthors
某商品的销售量x是P的函数,如果欲使该商品销售收人在价格变化情况下保持不变,则销售量x对于价格P的函数关系应满足什么微分方程,在这种情况下该商品需求量相对价格P的弹性是什么?
可以作为窗体记录源的是______。
最新回复
(
0
)