首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,(E+A)x=0只有零解,则下列矩阵间乘法不能交换的是( )
设A是n阶矩阵,(E+A)x=0只有零解,则下列矩阵间乘法不能交换的是( )
admin
2014-04-16
70
问题
设A是n阶矩阵,(E+A)x=0只有零解,则下列矩阵间乘法不能交换的是( )
选项
A、A—E;A+E.
B、A-E;(A+E)
-1
.
C、A—E;(A+E)
*
.
D、A—E;(A+E)
T
.
答案
D
解析
法一 因(A+E)(A一E)=A
2
一E=(A—E)(A+E),(*)故A+E,A—E左、右可交换,故A成立.(*)式左、右两边各乘(A+E)
-1
,得(A—E)(A+E)
-1
=(A+E)
-1
(A—E),(**)故(A+E)
-1
,A—E可交换,故B成立.(**)式两边乘|A+E|(数),得(A—E)(A+E)
*
=(A+E)
*
(A—E),故(A+E)
*
,A—E可交换.故C成立.由排除法,知应选D,即(A+E)
T
,A—E不能交换.
法二 (A+E)(A—E)=(A+E)(A+E一2E)=(A+E)
2
一2(A+E)=(A+E一2E)(A+E)=(A—E)(A+E).同理(A+E)
-1
(A—E)=(A+E)
-1
(A+E一2E)=(A+E)
-1
(A+E)一2(A+E)
-1
=(A+E)(A+E)
-1
一2(A+E)
-1
=(A+E一2E)(A+E)
-1
=(A—E)(A+E)
-1
.同理(A+E)
*
(A—E)=(A—E)(A+E)
*
.故应选D.
法三 D不成立,因A
T
A≠AA
T
,或举出反例,如取
而
故(A+E)
T
(A一E)≠(A—E)(A+E)
T
,即D不成立.
转载请注明原文地址:https://www.kaotiyun.com/show/oX34777K
0
考研数学二
相关试题推荐
(00年)设函数f(χ)在点χ=a处可导,则函数|f(χ)|在点χ=a处不可导的充分条件是【】
设0<P(A)<1,0<P(B)<1,P(A|B)+P()一1,则事件A和B
A、 B、 C、 D、 C
(2015年)设函数y=y(x)是微分方程y’’+y’一2y=0的解,且在x=0处y(x)取得极值3,则y(x)=______.
(1998年)设周期函数f(x)在(一∞,+∞)内可导,周期为4,又,则曲线y=f(x)在点(5,f(5))处的切线斜率为()
(2014年)设D是由曲线xy+1=0与直线y+x=0及y=2围成的有界区域,则D的面积为______.
(1998年)设曲线f(x)=xn在点(1,1)处的切线与x轴的交点为(ξn,0),则=______.
(89年)曲线y=χ+sin2χ在点()处的切线方程是_______.
设A为二阶矩阵,P=(a,Aa),其中a是非零向量且不是A的特征向量.证明P为可逆矩阵;
设二次型f(x1,x2,x3)=x12+x22+x32-2x12-2x13-2a2x22(a<0)通过正交变换化为标准型2y12+2y22+by32。(Ⅰ)求常数a,b的值;(Ⅱ)求正交变换矩阵;(Ⅲ)当|X|-1时,求二次型
随机试题
常规高温热疗的温度范围大致为
羊毛脂做软膏基质时,有许多特点,除了
城市某单位干部区礼华退休后在郊区的老家建了一处宅院,在那里安度晚年。后来区礼华于2003年2月病逝,所建宅院由他的三个儿子区绍宽、区绍厚、区绍富继承。三兄弟在市区都有住房,就商量把郊区的宅院卖掉,龙家兄弟龙甲和龙乙愿意购买此房。于是,区家三兄弟与龙家两兄弟
在项目评估阶段,银行应着重对几种主要的或关键的原辅料的供给条件进行分析评价,评价的主要内容包括()。
【大跃进运动】辽宁大学2014年历史学专业基础真题
简述影响问题解决的心理因素。(西南大学2019年研;华东帅范大学2013研;西南大学2012研)
设F(u,v)可微,y=y(x)由方程所确定,其中f(x)是连续函数且满足关系式,又f(1)=1,求:
有如下赋值语句,结果为"大家好"的表达式是()。a="你好"b="大家"
Thomasaskedthathe______allowedtotakethecoursethissemester.
A、Stayandnegotiateormove.B、MoveclosertotheUniversityornearthesubway.C、Fightforasmallincreaseoracceptsaninc
最新回复
(
0
)