首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,(E+A)x=0只有零解,则下列矩阵间乘法不能交换的是( )
设A是n阶矩阵,(E+A)x=0只有零解,则下列矩阵间乘法不能交换的是( )
admin
2014-04-16
72
问题
设A是n阶矩阵,(E+A)x=0只有零解,则下列矩阵间乘法不能交换的是( )
选项
A、A—E;A+E.
B、A-E;(A+E)
-1
.
C、A—E;(A+E)
*
.
D、A—E;(A+E)
T
.
答案
D
解析
法一 因(A+E)(A一E)=A
2
一E=(A—E)(A+E),(*)故A+E,A—E左、右可交换,故A成立.(*)式左、右两边各乘(A+E)
-1
,得(A—E)(A+E)
-1
=(A+E)
-1
(A—E),(**)故(A+E)
-1
,A—E可交换,故B成立.(**)式两边乘|A+E|(数),得(A—E)(A+E)
*
=(A+E)
*
(A—E),故(A+E)
*
,A—E可交换.故C成立.由排除法,知应选D,即(A+E)
T
,A—E不能交换.
法二 (A+E)(A—E)=(A+E)(A+E一2E)=(A+E)
2
一2(A+E)=(A+E一2E)(A+E)=(A—E)(A+E).同理(A+E)
-1
(A—E)=(A+E)
-1
(A+E一2E)=(A+E)
-1
(A+E)一2(A+E)
-1
=(A+E)(A+E)
-1
一2(A+E)
-1
=(A+E一2E)(A+E)
-1
=(A—E)(A+E)
-1
.同理(A+E)
*
(A—E)=(A—E)(A+E)
*
.故应选D.
法三 D不成立,因A
T
A≠AA
T
,或举出反例,如取
而
故(A+E)
T
(A一E)≠(A—E)(A+E)
T
,即D不成立.
转载请注明原文地址:https://www.kaotiyun.com/show/oX34777K
0
考研数学二
相关试题推荐
(03年)将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件【】
(2016年)已知函数f(x,y)=则()
设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵.若∣A∣=2,∣B∣=3,则分块矩阵的伴随矩阵为【】
设函数y=y(x)是微分方程-2y=0的解,且在x=0处y(x)取得极值3,则y(x)=__________.
(01年)设矩阵A=且秩(A)=3,则k=_______.
(89年)曲线y=χ+sin2χ在点()处的切线方程是_______.
[2018年]设A为三阶矩阵,α1,α2,α3是线性无关的向量组,若Aα1=α1+α2+α3,Aα2=α2+2α3,Aα3=一α2+α3,则A的实特征值为__________.
设A为二阶矩阵,P=(a,Aa),其中a是非零向量且不是A的特征向量.证明P为可逆矩阵;
(2002年)求极限
设f(x)∈c[a,6],在(a,b)内二阶可导(Ⅰ)若fA=0,fB<0,f’+A>0.证明:存在ζ∈(a,6),使得f(ζ)f"(ζ)+f’2(n)=0;(Ⅱ)若fA=fB=∫abf(x)dx=0,证明:存在η∈(a,b),使得f”
随机试题
肺胀病名首见于:
桂枝汤原方服法要求"服已须臾,吸热稀粥一升余",其意义在于
平原河网地区的城市用地工程适宜性评定重点是()
下列关于敏感性训练目的的表述,错误的是( )。
甲公司2015年年初的递延所得税资产借方余额为50万元,与之对应的预计负债贷方余额为200万元;递延所得税负债无期初余额。甲公司2015年度实现的利润总额为9520万元,适用的企业所得税税率为25%且预计在未来期间保持不变;预计未来期间能够产生足够的应纳税
根据保险法律制度的规定,投保人在订立保险合同时故意或因重大过失未履行如实告知义务,足以影响保险人决定是否同意承保或提高保险费率的,保险人有权解除合同,保险人解除合同的权利,自保险人知道有解除事由之日起超过一定期限不行使而消灭,该期限为()。
衡量计算机的主要性能指标除了字长、存取周期、运算速度之外,通常还包括(8),因为其反映了(9)。(8)
Whatdoesthespeakersuggestthatthestudentsshoulddoduringtheterm?
Thefinalproposalswerearatherunsuccessful______betweentheneedforprofitabilityandthedemandsoflocalconservationis
—Howareyoudoingsinceyouquityourteachingjob?—______Iworkoutdoorsnow,asagardener.Themoneyisnotsogood,butI
最新回复
(
0
)