首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈c[a,6],在(a,b)内二阶可导 (Ⅰ)若fA=0,fB<0,f’+A>0.证明:存在ζ∈(a,6),使得f(ζ)f"(ζ)+f’2(n)=0; (Ⅱ)若fA=fB=∫abf(x)dx=0,证明:存在η∈(a,b),使得f”
设f(x)∈c[a,6],在(a,b)内二阶可导 (Ⅰ)若fA=0,fB<0,f’+A>0.证明:存在ζ∈(a,6),使得f(ζ)f"(ζ)+f’2(n)=0; (Ⅱ)若fA=fB=∫abf(x)dx=0,证明:存在η∈(a,b),使得f”
admin
2021-01-28
79
问题
设f(x)∈c[a,6],在(a,b)内二阶可导
(Ⅰ)若fA=0,fB<0,f’
+
A>0.证明:存在ζ∈(a,6),使得f(ζ)f"(ζ)+f’
2
(
n
)=0;
(Ⅱ)若fA=fB=∫
a
b
f(x)dx=0,证明:存在η∈(a,b),使得f”(η)=f(η)。
选项
答案
(Ⅰ)因为f’
+
A>0,所以存在c∈(a,6),使得fC>fA=0,因为fCfB<0, 所以存在x
0
∈(c,b),使得f(x
0
)=0;因为fA=f(x
0
)=0,由罗尔定理,存在x
i
∈(a,x
0
),使得f’(x
1
)=0。 令φ(x)=f(x)f’(x),由φA=φ(x
1
)=0,根据罗尔定理,存在ζ∈(a,x
1
)∈(a,b),使得φ’(ζ)=0.而φ’(x)=f(x)f”(x)+f’
2
(x),所以f(ζ)f”(ζ)+f’
2
(x)=0。 (Ⅱ)令F(x)=∫
0
x
f(t)dt,因为FA=FB=0,所以由罗尔定理,存在c∈(a,b),使得 F’C=0,即fC=0。 令h(x)=e
x
f(x),由hA=hC=hB=0,根据罗尔定理,存在ζ
1
∈(a,c),ζ
2
∈(c,b), 使得h’(ζ
1
)=h’(ζ
2
)=0,则h’(x)=e
x
[f(x)+f’(x)],所以f(ζ
1
)+f’(ζ
1
)=0,f(ζ
2
)+f’(ζ
2
)。 再令G(x)=e
-x
[f(x)+f’(x)],由G(ζ
1
)=G(ζ
2
)=0,根据罗尔定理,存在η∈(ζ
1
,ζ
2
)。 ∈(a,b),使得G’(η)=0,而G’(x)=e
-x
[f"(x)-f(x)]且e
-x
≠0,所以f"(η)=f(η)。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/Zlx4777K
0
考研数学三
相关试题推荐
设A=,B为三阶非零矩阵,为BX=0的解向量,且AX=α3有解.(I)求常数a,b;(Ⅱ)求BX=0的通解.
积分∫aa+2πcosχln(2+cosχ)dχ的值().
设曲线L过点(1,1),L上任意一点P(x,y)处的切线交x轴于点T,O为坐标原点,若|PT|=|OT|。试求曲线L的方程。
向量组α1,α2,…,αs线性无关的充分条件是().
设f(x)是[0,+∞)上的连续函数,且当x≥0时成立,则f(x)=_________________________。
方程y”一3y’+2y=ex+1+excos2x的特解形式为()
当x→1时,函数f(x)=的极限()
设A=E—2ξξT,其中ξ=(x1,x2,…,xn)T,且有ξTξ=1。则①A是对称矩阵;②A2是单位矩阵;③A是正交矩阵;④A是可逆矩阵。上述结论中,正确的个数是()
设α,β为四维非零的正交向量,且A=αβT,则A的线性无关的特征向量个数为().
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
随机试题
局麻药毒性反应的原因,下列描述中错误的是
房地产开发项目的固定成本为3000万元,单位变动成本为1600元/米2,销售价格为3000元/米2。在不考虑销售税费的情况下,该项目的盈亏平衡点产量为()m2。
某银行支行员工发现有几位同事在与客户合谋骗贷,该员工应该()。
在新经济时代中,()是价值创造的基础。
某城区从事老人服务的六位社会工作者每月都聚在一起开督导会议,讨论在老人服务中遇到的困难、障碍及其应对方法,每次会议推选一位成员轮流主持,每位成员都有主持会议的机会。这种督导形式的特点包括()。
苏轼的诗词意境开阔,大气磅礴,历来为人称道。在《浣溪沙》一词中,他用“________?________!________。”的词句,告诉我们不要感叹岁月无情,人老了照样可以焕发青春,表现了他乐观旷达的生活态度;在《江城子.密州出猎》一词中,他用“____
按照(1)转化为(2)的规律,(3)转化为A、B、C、D中的哪一个?
在数据仓库环境中,粒度是一个重要的设计问题。粒度越【15】,细节程度越高,能回答的查询就越多,数据量就比较大。
面向对象方法中,实现对象的数据和操作结合于统一体中的是()。
SituationComedyToday’slectureisaboutsituationcomedy,itshistory,itscharacteristicsandsomefamouscomediesinthe
最新回复
(
0
)