首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,a)T,β=(1,b,3,2)T, ①a取什么值时α1,α2,α3,α4线性相关?此时求α1,α2,α3,α4的一个极大线性无关组,并且把其
α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,a)T,β=(1,b,3,2)T, ①a取什么值时α1,α2,α3,α4线性相关?此时求α1,α2,α3,α4的一个极大线性无关组,并且把其
admin
2020-07-02
90
问题
α
1
=(1,0,0,1)
T
,α
2
=(1,1,0,0)
T
,α
3
=(0,2,一1,一3)
T
,α
4
=(0,0,3,a)
T
,β=(1,b,3,2)
T
,
①a取什么值时α
1
,α
2
,α
3
,α
4
线性相关?此时求α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,并且把其余向量用该极大线性无关组线性表出.
②在α
1
,α
2
,α
3
,α
4
线性相关的情况下,b取什么值时β可用α
1
,α
2
,α
3
,α
4
线性表示?写出一个表示式.
选项
答案
两个小题都关系到秩,α
1
,α
2
,α
3
,α
4
线性相关[*]r(α
1
,α
2
,α
3
,α
4
)<4;β可用α
1
,α
2
,α
3
,α
4
线性表示[*](α
1
,α
2
,α
3
,α
4
,β)=r(α
1
,α
2
,α
3
,α
4
).因此应该从计算这两个秩着手. 以α
1
,α
2
,α
3
,α
4
,β为列向量构造矩阵(α
1
,α
2
,α
3
,α
4
,β),然后用初等行变换把它化为阶梯形矩阵: [*] ①r(α
1
,α
2
,α
3
,α
4
)<4[*]a=3.α
1
,α
2
,α
3
是α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,并且α
4
=一6α
1
+6α
2
—3α
3
. ②r(α
1
,α
2
,α
3
,α
4
,β)=r(α
1
,α
2
,α
3
,α
4
)=3,则b-2.β=一7α
1
+8α
2
—3α
3
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/oUx4777K
0
考研数学三
相关试题推荐
在区间[-1,1]上的最大值为______.
设顾客在某银行窗口等待服务的时间X(单位:分)服从参数为的指数分布,若等待时间超过10分钟,他就离开。设他一个月内要来银行5次,以Y表示一个月内他没有等到服务而离开窗口的次数,求Y的分布律及P{Y≥1).
设a=(2,-3,1),b=(1,-2,3),c=(2,1,2),向量r满足r⊥a,r⊥b,Prjcr=14,求r.
已知随机变量X与Y的相关系数且EX=EY,DX=则根据切比雪夫不等式有估计式P{|X—y|≥}≤______.
设函数f(x)连续,则f(1)=_______.
微分方程y"+4y=4x一8的通解为___________.
设线性方程组已知(1,-1,1,-1)T是该方程组的一个解,求方程组所有的解.
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记求U和V的联合分布;
设A,B和C都是n阶矩阵,其中A,B可逆,求下列2n阶矩阵的伴随矩阵.
(2006年)设函数f(u)可微,且f’(0)=,则z=f(4x2一y2)在点(1,2)处的全微分dz|(1,2)=______。
随机试题
患者,男性,50岁。以“急性阑尾炎”收住院。入院观察患者呈急性面容,蜷曲体位。这种收集资料的方法属于
未经医师(士)亲自诊查病人或亲自接产,医疗机构不得出具疾病诊断书。()
一个项目建成的标志是多方面的,主要包括()几方面。
甲企业是正处于发展过程中的IT企业,在选择其组织结构类型时,主要出发点应为()。
确需复制军事秘密载体时,须经()同意。
继“微博”之后,“微信”逐渐成为政府与群众沟通交流的新平台,人们亲切地称为“指尖上的政民对话”。政务微信的开通()。
在单CPU系统中,如果同时存在24个并发进程,则处于就绪队列中的进程最多有______个。
Access支持的查询类型有()。
RAM的特点是
Accordingtotheauthor,______.Inparagraphtwo,"beingthesameonthewavelength"means______.
最新回复
(
0
)