首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上可导,且f’+(a)>0,f’-(b)<0,证明方程f’(x)=0在(a,b)内至少有一个根.
设f(x)在[a,b]上可导,且f’+(a)>0,f’-(b)<0,证明方程f’(x)=0在(a,b)内至少有一个根.
admin
2019-08-27
40
问题
设f(x)在[a,b]上可导,且f’
+
(a)>0,f’
-
(b)<0,证明方程f’(x)=0在(a,b)内至少有一个根.
选项
答案
由[*],可知存在x
0
>0,使a+x
0
∈(a,b)且f(a+x
0
)>f(a). 同理,由[*],可知存在x
1
<0,使f(b+x
1
)-f(b)>0, 即有b+x
1
∈(a,b),使f(b+x
1
)>f(b). 而由f(x)在[a,b]上可导,则f(x)必连续. 由闭区间上连续函数的性质,知f(x)在[a,b]上必有最大点ξ,又由以上证明知ξ≠a和ξ≠b,因ξ必是f(x)的极值点,故有f’(ξ)=0.
解析
【思路探索】由题设条件找到函数f(x)在[a,b]上的最值点即可得结论.
【错例分析】此题若利用f’
+
(a)>0和f’
-
(b)<0以及连续函数的介值定理,即得:存在ξ∈(a,b),使f’(ξ)=0.这是错误的做法.因已知条件中仅告知f(x)的导函数f’(x)存在,并未告知导函数f’(x)是连续的.此题的正确做法就是利用f(x)在区间内的最值点存在.
转载请注明原文地址:https://www.kaotiyun.com/show/noS4777K
0
考研数学一
相关试题推荐
设f(x)=,则x2项的系数为_________.
设X和Y为两个随机变量,且P{X≥0,Y≥0}=,P{X≥0}=P(Y≥0)=,则P{max(X,Y)≥0}=________.
设y"一3y’+ay=一5e-x的特解形式为Axe-x,则其通解为__________.
设∑为平面y+z=5被柱面x2+y2=25所截得的部分,则曲面积分I=(x+y+z)dS=_____________.
设Ω是由锥面z=围成的空间区域,∑是Ω的整个边界的外侧,则xdydz+ydzdx+zdxdy=___________。
设力f=2i-j+2k作用在一质点上,该质点从点M1(1,1,1)沿直线移动到点M2(2,2,2),则此力所做的功为()
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)﹦f(b)﹦2。证明存在ξ,η∈(a,b),使得f(η)﹢f’)﹦2eξ-η。
计算极限
“对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的
设讨论函数f(x)的连续性,若有间断点,指明其类型.
随机试题
原子吸收法中肯能导致效果灵敏度降低的原因有()。
下列选项中,属于公务员交流原则的是()
Dandy-Walker综合征CT表现,不包括
下列哪项不是生理性蛋白尿
A.胸片示片状致密影,呈肺叶或肺段分布B.胸片示薄壁空洞,病灶周围可见卫星灶C.胸片示肺纹理增粗,紊乱,有蜂窝状和卷发样阴影D.侧位胸片示叶间梭形密度增高影E.胸片示肺动脉段突出,右下肺动脉干横径≥15mm叶间
其共轭酸的分子内氢键稳定的是其盐酸盐在冷水中溶解度小的是
三月初,从缅甸曼德勒飞往我国重庆,最可能遇到的情况有:①横断山脉气流的“狭管效应”②云贵高原上空遭遇冷空气南下③重庆连日阴雨④长江中下游受到梅雨带影响
对班级授课制给予了系统的理论描述和概括,从而奠定了它的理论基础的教育家是()。
下列技术中,不属于无线接入技术的是
阅读下面代码if(x==0){System.out.println("冠军");elseif(x>-3){System.out.println(“亚军”);}else{System.out.println
最新回复
(
0
)