首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的方差存在,并且满足不等式P{|X—E(X)|≥3}≤,则一定有( )
设随机变量X的方差存在,并且满足不等式P{|X—E(X)|≥3}≤,则一定有( )
admin
2016-03-21
85
问题
设随机变量X的方差存在,并且满足不等式P{|X—E(X)|≥3}≤
,则一定有( )
选项
A、D(X)=2.
B、P{|X—E(x)|<3}<
.
C、D(X)≠2.
D、P{|X—E(X)|<3}≥
.
答案
D
解析
因为事件{|X—E(X)|<3}是事件{|X—E(x)|≥3}的对立事件,且题设P{|X—E(X)|≥3}≤
,因此一定有P{|X—E(X)|<3}≥
,选项D正确.进一步分析,满足不等式P{|X—E(X)|≥3}≤
的随机变量,其方差既可能不等于2,亦可以等于2,因此选项A与C都不能选.若X服从参数n=8,p=0.5的二项分布,则有E(X)=4,D(X)=2.但是P{|X—E(X)|≥3}=P{|X一4|≥3}=P{X=0}+P{X=1}+P{X=7}+P{X=8}=
因此选项B也不成立.
转载请注明原文地址:https://www.kaotiyun.com/show/njw4777K
0
考研数学一
相关试题推荐
设f(x)是连续函数。若|f(x)|≤k,证明:当x≥0时,有(eax-1).
设A为实对称矩阵,且A的特征值都大于零,证明A为正定矩阵。
设曲线L1与L2皆过点(1,1),曲线L1在点(x,y)处纵坐标与横坐标之商的变化率为2,曲线L2在点(x,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积。
设[(x5+7x4+2)a-x]=b,b≠0,试求常数a,b的值.
已知矩阵A=只有两个线性无关的特征向量,则A的三个特征值是__________,a=__________.
某企业做销售某种商品的广告可通过电台及报纸两种方式,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)和报纸广告费用x2(万元)之间的关系如下:R=15+14x1+32x2-8x1x2-2x12-10x22在广告费用不限的情况下,求最
已知函数f(x)在[0,3π/2]上连续,在(0,3π/2)内是函数的一个原函数,f(0)=0.(I)求f(x)在区间[0,3π/2]上的平均值;(Ⅱ)证明f(x)在区间(0,3π/2)内存在唯一零点.
已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x-1)y”-(2x+1)y’+2y=0的两个解,若u(-1)=e,u(0)=-1,求u(x),并写出该微分方程的通解.
设一盒子中有5个球,编号分别为1,2,3,4,5.如果每次等可能地从中任取一球,记录其编号后放回,求3次取球得到的最大编号X的概率分布.如果一次从袋中任取3个球,求这3个球中最大编号y的概率分布.
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:最多试3把钥匙就能打开门
随机试题
DNA复制时,下列哪一种酶是不需要的?
下面不适宜用整装法装盒的修复体是A.全口义齿B.少数前牙缺失而无唇基托的义齿C.颊板D.活动矫治器E.以上都不是
视觉系统对所视物体与其背景的亮度差的辨别能力称为
常用于分离挥发油的方法是
与公司登记不同,非法人企业营业登记的登记事项中必须包括()。
β系数可以衡量()。
党的十六届六中全会明确提出了“()”的任务。
下列关于辩护的说法中,正确的是()。
(2011年单选37)隋《开皇律》在我国法制史上具有重要意义,其历史蓝本是()。
为Employee表增加一个字段“出生日期”,正确的SQL语句是
最新回复
(
0
)