首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设流速y=(x2+y2)j+(z一1)k,求下列情形流体穿过曲面∑的体积流量Q(如图9.67): (Ⅰ)∑为圆锥面x2+y2=z2(0≤z≤1),取下侧; (Ⅱ)∑为圆锥体(z2≥x2+y2,0≤z≤1)的底面,法向量朝上.
设流速y=(x2+y2)j+(z一1)k,求下列情形流体穿过曲面∑的体积流量Q(如图9.67): (Ⅰ)∑为圆锥面x2+y2=z2(0≤z≤1),取下侧; (Ⅱ)∑为圆锥体(z2≥x2+y2,0≤z≤1)的底面,法向量朝上.
admin
2018-11-21
65
问题
设流速y=(x
2
+y
2
)j+(z一1)k,求下列情形流体穿过曲面∑的体积流量Q(如图9.67):
(Ⅰ)∑为圆锥面x
2
+y
2
=z
2
(0≤z≤1),取下侧;
(Ⅱ)∑为圆锥体(z
2
≥x
2
+y
2
,0≤z≤1)的底面,法向量朝上.
选项
答案
(Ⅰ)首先,用曲面积分表示流量,即 Q=[*](x
2
+y
2
)dzdx+(z一1)dxdy. 直接投影到xy平面上代公式求Q. 由∑的方程z=[*],∑在xy平面上的投影区域D:x
2
+y
2
≤1(z=0) → [*] (Ⅱ)圆锥体(z
2
≥x
2
+y
2
,0≤z≤1)的底面∑即x
2
+y
2
≤1,z=1,它垂直于zx平面,在∑上z一1=0,因此 Q=[*](x
2
+y
2
)dzdx+(z一1)dxdy=0+0=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/nZg4777K
0
考研数学一
相关试题推荐
设4元齐次线性方程组(Ⅰ)为而已知另一4元齐次线性方程组(Ⅱ)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,0+8)T.(1)求方程组(Ⅰ)的一个基础解系;(2)当a为何值时,方程组(Ⅰ)与(Ⅱ)有非零公共解?若有,
设齐次线性方程组其中A≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解,有无穷多解?当有无穷多解时,求出其全部解,并用基础解系表示全部解.
设二重积分I=(x2+y2)dxdy,其中D是由曲线x2+y2=2x所围第一象限的平面区域,则I=___________.
下列积分中,积分值等于0的是().
设X,Y相互独立,都在(0,1)内服从均匀分布,现有区域D0={(x,y)|0≤x≤1,x2≤y≤1)(见下图).(1)若对(X,Y)进行5次独立观察,求至少有一次落在D0内的概率;(2)若要求至少有一次落在D0内的概率不小于0.999,至少要
设曲线y=ax2(x≥0,常数a>0)与曲线y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D。(Ⅰ)求D绕x轴旋转一周所成的旋转体的体积V(a);(Ⅱ)求a的值,使V(a)为最大。
求二重积分,其中D是由曲线r=2(1+cosθ)的上半部分与极轴所围成的区域。
如图1-3-2所示,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4)。设函数f(x)具有三阶连续导数,计算定积分
求不定积分
随机试题
对照网络计划检查进度偏差时,出现的下列情况中,必须调整进度计划的情况有()。
关于免疫球蛋白正确的是
适宜的病室环境是
腹胀满,无压痛,叩之作空声,可见于
(),银监会正式批准中困邮政储蓄银行开业。
《国际预防接种证明》俗称()。
关于班主任的角色,下列叙述不正确的是()。
制定《中华人民共和国义务教育法》依据的法律包括()
空赚经济指买卖中不出现商品实体,仅以买卖商品礼券的形式来赚取利润的经济模式。根据上述定义,下列属于空赚经济的是:
下列关于清朝官员的选项中,按照官品高低顺序排列的是
最新回复
(
0
)