首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f′(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<bf(b). 证明:存在ξi∈(a,b)(i=1,2,…,n),使得
设f′(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<bf(b). 证明:存在ξi∈(a,b)(i=1,2,…,n),使得
admin
2022-08-19
107
问题
设f′(x)是在[a,b]上连续且严格单调的函数,在(a,b)内可导,且f(a)=a<bf(b).
证明:存在ξ
i
∈(a,b)(i=1,2,…,n),使得
选项
答案
令h=(b-a)/n,因为f(x)在[a,b]上连续且单调增加,且f(a)=a<b=f(b),所以f(a)=a<a+h<…<a+(n-1)h<b=f(b),由端点介值定理和函数单调性,存在a<c
1
<c
2
<…<c
n-1
<b,使得 f(c
1
)=a+h,f(c
2
)=a+2h,…,f(c
n-1
)=a+(n-1)h,再由微分中值定理,得 f(c
1
)-f(a)=f′(ξ
1
)(c
1
-a),ξ
1
∈(a,c
1
4), f(c
2
)-f(c
1
)=f′(ξ
2
)(c
2
-c
1
),ξ
2
∈(c
1
,c
2
),… f(b)-f(c
n-1
)=f′(ξ
n
)(b-c
n-1
),ξ
n
∈(c
n-1
4,b), [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/n3R4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,证明:存在ξ∈(a,b),使得f’(ξ)=f(ξ).
证明:当x>0时,ex-1>(1+x)ln(1+x).
设f(x)二阶可导,=1,f(1)=1,证明:存在ξ∈(0,1),使得f’’(ξ)-f’(ξ)+1=0.
证明:曲线上任一点处切线的横截距与纵截距之和为2.
当0<x<时,证明:<sinx<x.
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在ξ,η∈(0,1),使得f’(ξ)+f’(η)=0.
随机试题
儿童社会化的首要场所是()
凡高度危险性物品,必须选用
用于冲洗智齿冠周炎的过氧化氢溶液的浓度应是
28岁初产妇,孕30周,产前检查发现子宫比孕周大,羊水量较多,近几周孕妇体重增加过快,但无水肿,腹壁可及肢体较多,应对该孕妇首选哪项检查
风心病主动脉瓣狭窄出现哪项体征提示左心功能不全
治疗肝性脑病病人,作用于恢复脑部正常神经递质的药物是
关于共同犯罪,下列哪些选项是正确的?(2013年卷二55题)
某建设项目以财务净现值为指标进行敏感性分析的有关数据如下表所示。则该建设项目投资额变化幅度的临界点是()。
下列矩阵中不能相似于对角矩阵的矩阵是()
Doyoufindgettingupinthemorningsodifficultthatit’spainful?Thismightbecalledlaziness,butDr.Kleitmanhasanew【
最新回复
(
0
)