首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,A的秩为2,且 求A的所有特征值与特征向量.
设A为3阶实对称矩阵,A的秩为2,且 求A的所有特征值与特征向量.
admin
2018-08-03
28
问题
设A为3阶实对称矩阵,A的秩为2,且
求A的所有特征值与特征向量.
选项
答案
由于A的秩为2,故0是A的一个特征值.由题设可得 [*] 所以,一1是A的一个特征值,且属于一1的特征向量为k
1
(1,0,一1)
T
,k
1
为任意非零常数;1也是A的一个特征值,且属于1的特征向量为k
2
(1,0,1)
T
,k
2
为任意非零常数. 设x=(x
1
,x
2
,x
3
)
T
为A的属于。的特征向量,由于A为实对称矩阵,A的属于不同特征值的特征向量相互正交,则 [*] 解得上面齐次线性方程组的基础解系为(0,1,0)
T
,于是属于0的特征向量为k
3
(0,1,0)
T
,其中k
3
为任意非零常数.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/mug4777K
0
考研数学一
相关试题推荐
设f(x)=3x2+Ax-3(x>0),A为正常数,问A至少为多少时,f(x)≥20.
设f(x)在[0,+∞)内可导且f(0)=1,f’(x)<f(x)(x>0).证明:f(x)<e(x>0).
设f(x)在[a,+∞)上连续,f(a)<0,而存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
设α1,α2,…,αt为AX=0的一个基础解系,P不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
设X1,X2,…,Xn是来自总体X的简单随机样本,已知总体X服从参数为λ(λ>0)的指数分布.(Ⅰ)试求总体X的数学期望E(X)的矩估计量和最大似然估计量;(Ⅱ)检验所得估计是否为无偏估计.
设三元二次型xTAx=+2x1x2—2x2x3—2ax1x3的正、负惯性指数都是1,(Ⅰ)求a的值,并用正交变换化二次型为标准形;(Ⅱ)如B=A3一5A+E,求二次型xTBx的规范形.
设二次型f(x1,x2,x3)=+2x1x3—2x2x3,(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为,求a的值.
设A=(aij)是秩为n的n阶实对称矩阵,Aij是|A|中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xjxj.(Ⅰ)记X=(x1,x2,…,xn)T,试写出二次型f(x1,x2,…,xn)的矩阵形式;(Ⅱ)判断
随机试题
交换二重积分的次序:=______。
关于Verga腔的描述,错误的是()。
谭某拥有一套建筑面积为140m2的住宅,位于一幢钢筋混凝土结构高层住宅楼的12层。该套住宅的套内房屋使用面积为95m2,套内墙体面积为20m2,套内未封闭阳台的水平投影面积为10m2,谭某所在楼层单元楼梯间的建筑面积为20m2。一个月前谭某委托乙房地产经纪
下列关于咨询工程师的表述,错误的是()。
在中国境内无住所又不居住,或者无住所而在境内居住不满1年的个人,属于我国的居民纳税人。()
Shetoldherchildrenthattheymustnot______playwithmatches.
企业对国家授予其经营管理的财产享有()。
下列词语中没有错别字的是()。
当前户籍制度改革时机成熟,改革不仅有着强烈的民意期待,而且一些地方先行先试也积累了经验。但同时也要看到,改革牵一发动全身,尤其是涉及广泛的户籍改革,宜分类推进、分步实施。如在三、四线城市等农民入户意愿有限、公共资源并不十分紧张的地方先行放开,着力解决增量;
Britishscientistspredictgreatdangersforthehumanrace,saying______(人类遥远的未来一定在太空中).
最新回复
(
0
)