首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1,a2,…,an为n个n维线性无关的向量,A是n阶矩阵.证明:Aa1,Aa2,…,Aan线性无关的充分必要条件是A可逆.
设a1,a2,…,an为n个n维线性无关的向量,A是n阶矩阵.证明:Aa1,Aa2,…,Aan线性无关的充分必要条件是A可逆.
admin
2019-11-25
61
问题
设a
1
,a
2
,…,a
n
为n个n维线性无关的向量,A是n阶矩阵.证明:Aa
1
,Aa
2
,…,Aa
n
线性无关的充分必要条件是A可逆.
选项
答案
令B=(a
1
,a
2
,…,a
n
),因为a
1
,a
2
,…,a
n
为n个n维线性无关的向量,所以r(B)=n.(Aa
1
,Aa
2
,…,Aa
n
)=AB,因为,r(AB)=r(A),所以Aa
1
,Aa
2
,…,Aa
n
线性无关的充分必要条件是r(A)=n,即A可逆.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/m9D4777K
0
考研数学三
相关试题推荐
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);(2)在(a,b)内至少存在一点η,且η≠ξ,使得f"(η)=f(η)
设f(x)在[a,b]上连续且严格单调增加.证明:(a+b)∫abf(x)dx<2∫abxf(x)dx.
设函数f(x)在[0,1]上连续,(0,1)内可导,且f(x)dx=f(0).证明:在(0,1)内存在一点c,使f’(c)=0.
设f(x)在(一∞,+∞)内连续,以T为周期,证明:(1)∫aa+Tf(x)dx=∫0Tf(x)dx(a为任意实数);(2)∫0xf(t)dt以T为周期∫0Tf(x)dx=0;(3)∫f(x)dx(即f(x)的全体原函数)周期
已知P为3阶非零矩阵,且满足PQ=O,则()
设Y~U(a,5),关于x的方程4x2+4Yx+3Y+4=0无实根的概率为,则常数a=()
设常数a>0,至少用两种方法计算定积分:
汽车加油站共有两个加油窗口,现有三辆车A,B,C同时进入该加油站,假设A、B首先开始加油,当其中一辆车加油结束后立即开始第三辆车C加油.假设各辆车加油所需时间是相互独立且都服从参数为λ的指数分布.(I)求第三辆车C在加油站等待加油时间T的概率密度;(Ⅱ)求
设α1,α2,…,αs是一个n维向量组,β和γ也都是n维向量.判断下列命题的正确性.①如果β,γ都可用α1,α2,…,αs线性表示,则β+γ也可用α1,α2,…,αs线性表示.②如果β,γ都不可用α1,α2,…,αs线性表示,则β+γ也
设曲线y=ax2+bx+c过原点,且当0≤x≤1时,y≥0,并与x轴所围成的图形的面积为,试确定a、b、c的值。使该图形绕x轴旋转一周所得的立体体积最小.
随机试题
微增战略
患者腹大胀满,按之如囊裹水,甚则颜面微浮,下肢浮肿,脘腹痞胀,得热则舒,精神困倦,怯寒懒动,小便少,大便溏,舌苔白腻,脉缓。治宜选用
A.脓血便B.鲜血便C.果酱样便D.柏油便E.无血便外痔患者粪便呈
报表软件中,可以唯一标识一个表页的标志是()。
下列不属于证券经纪业务法律风险的是()。
根据市场选择的标准,下列细分市场银行应选择的是()。
定义:①专有名词:表示具体的人,事物,地点或机构的专有名称。②抽象名词:表示动作、状态、品质或其他抽象概念。③具体名词:表示物质或不具备确定形状和大小的个体的物质。典型例证:(1)水(2)北京(3)友情上述典型例证与定义存在对应关系的数目有(
AchangesofNewspapersBservicebyNewspapersCsaleplaceofNewspapersDpopularityofNewspapersETrendofNewspapers
Accordingtotheauthor,abornnaturalistshouldfirstofallbe______.Thefirstparagraphtellsusthattheauthor______.
A—SoldB—ForsaleC—AllsoldouttodayD—BargainsaleE—NotforsaleF—Bew
最新回复
(
0
)