首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
admin
2017-07-26
75
问题
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且
f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
选项
答案
[*] 在[a,2]上f(x)满足洛尔定理的全部条件,由洛尔定理,存在一点b∈(a,2),使得f’(b)=0,又f’(x)在[a,b]上满足洛尔定理的全部条件,由洛尔定理,存在点ξ∈(a,b)[*](0,2),使得f"(ξ)=0.
解析
要证f"(ξ)=0,对f(x)可用两次洛尔定理来证明.用两次洛尔定理的关键是在[0,2]内构造使得f(a)=f(2)的区间和使f’(b)=f’(c)的区间[a,2]与[b,c].[a,2]可由积分中值定理得到,[b,c]可由已知极限和洛尔定理获得.
转载请注明原文地址:https://www.kaotiyun.com/show/luH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
设一下命题:①若(u2n-1+u2n)收敛,则un收敛.②若un收敛,则un+1000收敛.③若un+1/un>1,则un发散.④若(un+vn)收敛,则un,vn都收敛.则以上命题中正确的是
设E,F是两个事件,判断下列各结论是否正确,如果正确,说明其理由;如果不正确,给出其反例.(1)P(E∩F)≤P(E|F);(2)P(E∩F|F)=P(E|F).
已知实二次型f(x1,x2,x3)=a(x11+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率a,并用泊松分布求出a的近似值(小数点后取两位有效数字).[附表]
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,问:(Ⅰ)a1能否由a2,a3,线性表出?证明你的结论.(Ⅱ)a4能否由a1,a2,a3铴线性表出?证明你的结论.
设u=二阶连续可导,又,求f(x).
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f()<0.证明:存在ξ∈(a,b),使得f’(ξ)=f(ξ).
设f(x)在[a,b]上连续,a<x1<x2<…<xn<b.试证:在[a,b]内存在ξ,使得
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导,试证:在(a,b)内至少有一点ξ,使等式=f(ξ)一ξf’(ξ)成立.
随机试题
WHO对糖尿病“空腹血糖”的定义标准中,“空腹”的含义是至少多少小时没有热量摄入
胎盘物质转运方式包括下列哪些项
为了测定小儿麻痹症后遗症患者的臀中肌肌力,下列哪项试验是最正确的
A.乳腺内有多发胀痛、质韧之肿块B.乳腺内有红肿、触痛伴波动感的包块C.乳腺内有单发、光滑、活动度大的肿物D.乳腺内有单发、质硬、活动度差的肿物E.乳腺内有单发囊性结节最可能为乳腺脓肿的是
2018年我国科技界取得了一系列重大成果,这些成果中不包括:
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
近代中国半殖民地半封建社会的特点是()。
某公司承接了城市道路信息系统建设项目,由于施工日期正好是7月份的雨季。项目团队为了管理好项目的进度,最好采用____________进行进度管理。
StaffRelations:theimportanceofconsultingstaffbeforeimplementingchangesinworkpractices
OnecountrythatiscertainoftheeffectoffilmsontourismisAustralia.TheTouristOfficeofQueenslandsaythatCrocodile
最新回复
(
0
)