首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)的联合分布为 其中a,b,c为常数,且EXY=-0.1,P{X≤0|Y≥2}=,记Z=X+Y.求: (Ⅰ)a,b,c之值; (Ⅱ)Z的概率分布; (Ⅲ)P{Z=X}与P{Z=Y}.
设二维随机变量(X,Y)的联合分布为 其中a,b,c为常数,且EXY=-0.1,P{X≤0|Y≥2}=,记Z=X+Y.求: (Ⅰ)a,b,c之值; (Ⅱ)Z的概率分布; (Ⅲ)P{Z=X}与P{Z=Y}.
admin
2016-10-26
41
问题
设二维随机变量(X,Y)的联合分布为
其中a,b,c为常数,且EXY=-0.1,P{X≤0|Y≥2}=
,记Z=X+Y.求:
(Ⅰ)a,b,c之值;
(Ⅱ)Z的概率分布;
(Ⅲ)P{Z=X}与P{Z=Y}.
选项
答案
(Ⅰ)由联合分布性质,有0.1+a+0.2+b+0.2+0.1+c=1,即 a+b+c=0.4. ① 由EXY=-0.1—2a—0.6+0.2+3c=-0.1[*]3c一2a=0.4. ② 由[*],得 3a一5c=-0.7. ③ 联立①,②,③,解方程组[*]得a=0.1,b=0.1,c=0.2. (Ⅱ)由(X,Y)的联合分布 [*] 及Z=X+Y,可知Z的取值为0,1,2,3,4.由于 P{Z=0}=P{X=-1,Y=1}=0.1, P{Z=1}=P{X=0,Y=1}+P{X=-1,Y=2}=0.1+0.1=0.2, P{Z=2}=P{X=0,Y=2}+P{X=-1,Y=3}+P{X=1,Y=1} =0.2+0.2=0.4. P{Z=3}=P{X=0,Y=3}+P{X=1,Y=2}=0.1, P{Z=4}=P{X=1,Y=3}=0.2, 从而得Z的概率分布为 [*] (Ⅲ)由X,Y的边缘分布可知 P{Z=Y}=P{X+Y=Y}=P{X=0}=0.3, P{Z=X}=P{X+Y=X}=P{Y=0}=([*])=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/lnu4777K
0
考研数学一
相关试题推荐
y+2z-7=0
[*]本题是两个不同分布的综合问题,所求的事件Vn为n次独立重复实验中X的观测值不大于0.1的次数,故Vn服从二项分布b(n,p),而这里p为X的观测值不大于0.1的概率,需要根据X服从的分布来计算.
甲袋中有2个白球,乙袋中有2个黑球,每次从各袋中任取一球交换后放人另一袋中,共交换3次,用X表示3次交换后甲袋中的白球数,求X的概率分布.
用集合运算律证明:
由Y=sinx的图形作下列函数的图形:(1)y=sin2x(2)y=2sin2x(3)y=1—2sin2x
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有().
已知函数f(x,y)在点(0,0)某邻域内连续,且则
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时.证明丨A丨≠0.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤22;
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
随机试题
初级卵母细胞
男,53岁,肝硬化腹腔积液,近1周有发热,腹胀,稍有呼吸困难,腹腔积液较前有所增长,心率96次/分,应用利尿药治疗2天后出现沉默寡言,性格改变。合适的诊断是
下列有关占有制度的说法正确的有:
工作流程组织是组织论的重要研究内容,其主要包括( )流程组织。
在对投资方案进行经济效益评价时,常用的动态指标有()。
根据增值税法律制度的规定,下列关于增值税的纳税地点,说法正确的有()。
资料(一)甲股份有限公司(以下简称甲公司)成立于1997年,是一家大型服装企业,2000年在上海证券交易所挂牌上市,业务涵盖品牌服装的经营以及高档精纺呢绒、高档西服、职业服的生产和销售。其中,品牌服装的经营包括品牌管理、供应链管理和营销网络管理等
进口对于()相当于()对于商品
根据下面资料回答问题:2005年底,全国城镇房屋建筑面积164.51亿平方米,其中住宅建筑面积107.69亿平方米,占房屋建筑面积的比重为65.46%。东部地区房屋建筑面积83.8亿平方米,中部地区45.22亿平方米,西部地区35.48亿平方米,
将法律责任划分为民事责任、刑事责任、行政责任、国家赔偿责任与违宪责任的标准是()。
最新回复
(
0
)