首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
设f(x),g(x)在[a,b]上连续且g(x)不变号,证明至少存在一点ξ∈[a,b],使∫abf(x)g(x)dx=f(ξ)∫abg(x)dx。
设f(x),g(x)在[a,b]上连续且g(x)不变号,证明至少存在一点ξ∈[a,b],使∫abf(x)g(x)dx=f(ξ)∫abg(x)dx。
admin
2022-08-12
25
问题
设f(x),g(x)在[a,b]上连续且g(x)不变号,证明至少存在一点ξ∈[a,b],使∫
a
b
f(x)g(x)dx=f(ξ)∫
a
b
g(x)dx。
选项
答案
当g(x)=0,x∈[a,b]时,有∫
a
b
g(x)dx=0,∫
a
b
f(x)g(x)dx=0,此时任意ξ∈[a,b],有∫
a
b
f(x)g(x)dx=f(ξ)∫
a
b
g(x)dx=0。 当g(x)≠0时,因为g(x)在[a,b]上不变号,所以必有对任意x∈[a,b],g(x)>0或g(x)<0。不妨设x∈[a,b]时,g(x)>0。根据最大值最小值定理知f(x)在[a,b]上连续,则必取到最小值m和最大值M,所以对任意x∈[a,b],都有m≤f(x)≤M,进而有,mg(x)≤f(x)g(x)≤Mg(x),可以推出 ∫
a
b
mg(x)dx=∫
a
b
g(x)dx≤∫
a
b
f(x)g(x)dx≤∫
a
b
Mg(x)dx=∫
a
b
g(x)dx。 因为∫
a
b
g(x)dx>0,可得m≤∫
a
b
f(x)g(x)dx/∫
a
b
g(x)dx≤M,根据介值定理可知,至少存在一点ξ∈[a,b],使∫
a
b
f(x)g(x)dx/∫
a
b
g(x)dx=f(ξ),即∫
a
b
f(x)g(x)dx=f(ξ)∫
a
b
g(x)dx。 综上,至少存在一点ξ∈[a,b],使∫
a
b
f(x)g(x)dx=f(ξ)∫
a
b
g(x)dx。结论得证。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/lKtv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
医学科学家证明,如果人的大脑皮层受损,就会丧失思维能力,没有意识。这说明()。
2017年两会期间,习近平总书记参加上海代表团审议时强调,走出一条符合超大城市特点和规律的社会治理新路子是关系上海发展的大问题。实践证明,城市治理涉及群众利益的事情,关键是要让群众参与,使政府有形之手、市场无形之手、市民勤劳之手同向发力,努力形成城市综合管
设,x∈(0,+∞),证明:(1)f(x)在其定义域内单调增加;(2)
(1)设,抛物线y=x2一2过点(t,t2一2)的切线与x轴的交点为(g(t),0),求g(t).(2)定义数列{xn}如下:x0=2,xn+1=g(xn),n=0,1,2,…证明:(上述求方程根的近似值的方法称为牛顿切线法)
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥>0,g’(x)≥0。证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)≥f(a)g(1)请说明初中函数内容教学的要求,并结合
设二次函数f(x)=ax2+bx+c(a>0),方程f(x)—x=0的两个根x,x满足0<x1<x2<。(1)当x∈(0,x1)时,证明x<f(x)<x1;(2)设函数f(x)的图象关于直线x=x0对称,证明x0<。
证明
随机试题
全回流稳定如何判断?全回流通常适用于哪些场合?
下列哪种酶不参加DNA的切除修复过程()(1999年)
气性坏疽属于
下列关于H=F×b/a=F×(M-1)叙述,错误的是
拔牙钳喙与牙长轴平行的目的是
患者,女,59岁,因支气管哮喘发作急诊入院,护士治疗时,未按操作要求,快速静脉推注某药后,患者出现头晕、心悸、血压剧降、严重的心律失常、抽搐,此药物可能是
乙工业企业销售产品每件230元,若客户购买达到100件及以上的,可得到20元/件的商业折扣。某客户2010年12月10日购买该企业产品200件,则乙工业企业因该项销售应确认的收入为()元。
瞬时记忆的特点是()。
探月工程
张珊喜欢喝绿茶,也喜欢喝咖啡。他的朋友中没有人既喜欢喝绿茶,又喜欢喝咖啡,但他的所有朋友都喜欢喝红茶。如果上述断定为真,则以下哪项不可能为真?
最新回复
(
0
)