首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn. 求方程组AX=b的通解.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n一1)αn-1=0,b=α1+α2+…+αn. 求方程组AX=b的通解.
admin
2017-08-31
83
问题
设n阶矩阵A=(α
1
,α
2
,…,α
n
)的前n一1个列向量线性相关,后n-1个列向量线性无关,且α
1
+2α
2
+…+(n一1)α
n-1
=0,b=α
1
+α
2
+…+α
n
.
求方程组AX=b的通解.
选项
答案
因为α
1
+2α
2
+…+(n一1)α
n-1
=0,所以α
1
+2α
2
+…+(n一1)α
n-1
+0α
n
=0,即齐次线性方程组AX=0有基础解系ξ=(1,2,…,n—1,0)
T
,又因为b=α
1
+α
2
+…+α
n
,所以方程组AX=b有特解η=(1,1,…,1)
T
,故方程组AX=b的通解为kξ+η=k(1,2,…,n一1,0)
T
+(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/lGr4777K
0
考研数学一
相关试题推荐
设且B=P-1AP.求矩阵A的特征值与特征向量;
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3证明:任一三维非零向量β(β≠0)都是A2的特征向量,并求对应的特征值。
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3问ξ1+ξ2是否是A的特征向量?说明理由;
设,试证明:级数条件收敛.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件α
若矩阵相似于对角矩阵A,试确定常数a的值,并求可逆矩阵P使P﹣1AP=A.
设四阶矩阵B=,且矩阵A满足关系式A(E-C-1B)TCT=E,其中E为四阶单位矩阵,C-1表示C的逆矩阵,CT表示C的转置矩阵,将上述关系式化简并求矩阵A.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠O,使得AB=O,则().
随机试题
白内障手术率(cataractsurgicallrate,CSR)为1000,指的是
急性粟粒型肺结核的临床特点中不正确的是
肥厚型心肌病的临床表现是
不出现弦脉的情况是
关于建筑工程施工现场灭火器设置要求的表述,正确的是()。
考核文教卫生支出项目效益时,应采用的方法是()。
“顾客就是上帝”属于市场营销中的()。
________是感觉与知觉的总称,是人类认识客观世界的最基本的认知形式。
高等学府
结合材料,回答问题:要坚持走中国特色社会主义政治发展道路和推进政治体制改革。要把制度建设摆在突出位置,充分发挥我国社会主义政治制度优越性,积极借鉴人类政治文明有益成果,绝不照搬西方政治制度模式。政治体制改革是我国全面改革的重要组成部分。
最新回复
(
0
)