首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. 求A的特征值与特征向量;
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. 求A的特征值与特征向量;
admin
2021-02-25
94
问题
设3阶实对称矩阵A的各行元素之和均为3,向量α
1
=(-1,2,-1)
T
,α
2
=(0,-1,1)
T
是线性方程组Ax=0的两个解.
求A的特征值与特征向量;
选项
答案
由题设知α
1
,α
2
是Ax=0的两个解,所以有Aα
1
=0,Aα
2
=0.即Aα
1
=0α
1
,Aα
2
=0α
2
.而α
1
,α
2
线性无关,所以λ
1
=λ
2
=0是A的二重特征值,α
1
,α
2
为A的属于特征值0的两个线性无关的特征向量. 又矩阵A的各行元素之和均为3,即 [*] 由特征值与特征向量的定义,知λ
3
=3是A的一个特征值,α
3
=(1,1,1)
T
为A的属于特征值3对应的一个特征向量. 于是,A的全部特征值为λ
1
=λ
2
=0,λ
3
=3.属于特征值0对应的全部特征向量k
1
α
1
+k
2
α
2
(k
1
,k
2
是不全为零的任意常数),属于特征值3对应的全部特征向量k
3
α
3
(k
3
是不为零的任意常数).
解析
本题主要考查实对称矩阵对角化的逆问题.由α
1
,α
2
是线性方程组Ax=0的解,知α
1
,α
2
是属于0的特征向量.又由A的各行元素之和为3,知(1,1,1)
T
是A的属于3的特征向量.于是A的所有的特征值、特征向量均求出,从而本题就成为一个常规题了.
转载请注明原文地址:https://www.kaotiyun.com/show/kZ84777K
0
考研数学二
相关试题推荐
下列矩阵中两两相似的是
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设A=,若存在秩大于1的三阶矩阵B使得BA=0,则An=_______.
设A,B为三阶矩阵且A不可逆,又AB+2B=O且r(B)=2,则|A+4E|=().
设x与y均大于0,且x≠y,证明:<1.
设A,B是n阶可逆矩阵,且A~B,则①A-1~B-1;②AT~BT;③A*~B*;④AB~BA.其中正确的个数是()
已知A,B为三阶矩阵,且秩(B)=2,秩(AB)=1.试求AX=0的通解.
设y″的系数为1的某二阶常系数非齐次线性微分方程的两个特解为y1*=(1-x+x2)ex与y1*=x2ex则该微分方程为______.
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足(Ⅰ)求矩阵A的特征值;(Ⅱ)求矩阵A的特征向量;(Ⅲ)求矩阵A*一6E的秩.
设A=,正交矩阵Q使得QTAQ为对角矩阵,若Q的第一列为(1,2,1)T,求a,Q。
随机试题
冷冲模的特殊装配工艺主要指低溶点、合金浇注、无机粘接和环氧树脂粘接。()
在分组交换网中,信息是以( )为单位来传输的。
A.急性肾炎综合征B.急进性肾炎综合征C.肾病综合征D.慢性肾炎综合征E.隐匿性肾炎综合征(2003年第100题)毛细血管内增生性肾小球肾炎的临床表现是
(2007)饮用净水系统应满足的要求,以下哪条错误?
分析异步电动机运行情况的重要参数是()。
根据企业破产法律制度的规定,关于破产案件受理后、破产宣告前的程序转换,下列表述中,正确的是()。
计件工资制的具体形式包括()。
打击与保护,两者是紧密联系、相互依存、相互渗透,但保护以打击为前提。( )
标志着无产阶级登上历史舞台的三大工人运动是()
Broken:DreamsofRuralPeaceItwasduskinTubneyWoods,deepinruralOxfordshire.Thebirdsweresingingattheendofanoth
最新回复
(
0
)