首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任意a∈[0,1],有∫0ag(x)f’(x)dx+∫01 f(x)g’(x)dx≥f(A)g(1).
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任意a∈[0,1],有∫0ag(x)f’(x)dx+∫01 f(x)g’(x)dx≥f(A)g(1).
admin
2015-07-22
77
问题
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任意a∈[0,1],有∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(A)g(1).
选项
答案
令F(A)=∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(A)g(1),a∈[0,1],则 F’(a)=g(a)f’(a)一f’(a)g(1)=f’(a)[g(a)一g(1)]. 因为x∈[0,1]时,f’(x)≥0,g’(x)≥0,即函数f(x),g(x)在[0,1]上单调递增,又a≤1,所以 F’(a)=f’(a)[g(a)一g(1)]≤0, 即函数F(a)在[0,1]上单调递减,又 F(1)=∫
0
1
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(1)g(1) =∫
0
1
[g(x)f(x)]’dx一f(1)g(1)=g(1)f(1)一g(0)f(0)一f(1)g(1) =一f(0)g(0)=0, 所以,F(a)≥F(1)=0,即 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx一f(a)g(1)≥0, 即 ∫
0
a
g(x)f’(x)dx+∫
0
1
f(x)g’(x)dx≥f(a)g(1).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/k5U4777K
0
考研数学三
相关试题推荐
据新华社2022年4月16日报道,神舟十三号载人飞行任务的圆满成功,标志着空间站()任务圆满完成,中国空间站()。
2022年1月18日上午,习近平总书记在中国共产党第十九届中央纪律检查委员会第六次全体会议上的讲话中指出,()是新时代党的自我革命的伟大实践,开辟了百年大党自我革命的新境界。
2022年1月17日,国家主席习近平在北京出席2022年世界经济论坛视频会议并发表题为《坚定信心勇毅前行共创后疫情时代美好世界》的演讲。习近平指出,要以()为理念引领全球治理体系变革。
据新华社2022年6月8日报道,人力资源和社会保障部、财政部近日印发通知,明确2022年“三支一扶”计划招募高校毕业生3.4万名。“三支一扶”是指()和帮扶乡村振兴。
事实雄辩地证明,只有中国共产党才能肩负起()的历史使命,才能带领中国人民实现()的中国梦。
居里夫人在做盐铀实验时,发现了一种与盐铀放射性接近,但化学性质却完全不同的未知元素。后来,她通过大量矿石放射性的实验证明这种未知元素的存在,又经过三年多的实验,她终于提炼出了这种新元素并将它命名为“镭”。镭的发现引起科学和哲学的巨大变革,为人类探索原子世界
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
利用函数的凹凸性,证明下列不等式:
设∑与а∑满足斯托斯克斯定理中的条件,函数f(x,y,z)与g(x,y,z)具有连续二阶偏导数,f▽g表示向量▽g数乘f,即f▽g=f(gx,gy,gz)=(fgx,fgy,fgz)证明:
(1)如果点P(x,y)以不同的方式趋于Po(xo,yo)时,f(x,y)趋于不同的常数,则函数f(x,y)在po(xo,yo)处的二重极限____________.(2)函数f(x,y)在点(xo,yo)连续是函数在该点处可微分的___________
随机试题
案例分析:大发快餐店是一个典型的中国式快餐店,经营的品种很多,包括中国人习惯食用的面粉类、饭菜类、包子、水饺等不下二三十种款式,却无甚特色,任何一个馆子都可供应。但该店位置却得天独厚,位于繁华地段中心,人流量大,加上该店有适当的设施和装饰,环境较
朱某因婚外恋产生杀害妻子李某之念。某日晨,朱某在给李某炸油饼时投放了可以致死的“毒鼠强”。朱某为防止其6岁的儿子吃饼中毒,将其子送到幼儿园,并嘱咐其子等他来接。不料李某当日提前下班后将其子接回,并与其子一起吃油饼。朱某得知后,赶忙回到家中,其妻、子已中毒身
ext3比ext2文件系统主要增加了_______功能。
病人排泄物宜采用消毒灭菌
蒋某是C市某住宅小区6栋3单元502号房业主,入住后面临下列法律问题,请根据相关事实予以解答。请回答题。(2017年卷三86—88题)小区地下停车场设有车位500个,开发商销售了300个,另200个用于出租。蒋某购房时未买车位,现因购车需使用车位。下列
以下反映长期偿债能力的财务比率有()。
()是指债券发行人确认当日登记在册的债券所有权人或权益人享有相关债券权益的日期。
()有“车行半边路,肉香一条街”之誉。
妇女社会工作者金迪经常把类似处境的妇女组织起来,建立支持小组.那么她应该注意的问题不包括()。
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下而的操作。注意:以下的文件必须保存存考生文件夹下。在考生文件夹下打开文档WORD.DOCX,按照要求完成下列操作并以该文件名(WORD.DOCX)保存文档。某高
最新回复
(
0
)