首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)由方程sinxy+ln(y-x)=x确定函数y=y(x),求|x=0. (2)设函数y=y(x)由2xy=x+y确定,求dy|x=0. (3)设由e-y+x(y-x)=1+x确定y=y(x),求y’’(0). (4)设y=y(x)由x-∫0x+ye-
(1)由方程sinxy+ln(y-x)=x确定函数y=y(x),求|x=0. (2)设函数y=y(x)由2xy=x+y确定,求dy|x=0. (3)设由e-y+x(y-x)=1+x确定y=y(x),求y’’(0). (4)设y=y(x)由x-∫0x+ye-
admin
2020-03-10
54
问题
(1)由方程sinxy+ln(y-x)=x确定函数y=y(x),求
|
x=0
.
(2)设函数y=y(x)由2
xy
=x+y确定,求dy|
x=0
.
(3)设由e
-y
+x(y-x)=1+x确定y=y(x),求y’’(0).
(4)设y=y(x)由x-∫
0
x+y
e
-t
2
dt=0确定,求
|
x=0
.
选项
答案
(1)将x=0代入sinxy+ln(y-x)=x得y=1, 对sinxy+ln(y-x)=x两边关于x求导得 [*] 将x=0,y=1代入上式得[*]=1. (2)当x=0时,y=1, 对2
xy
=x+y两边关于x求导,得2
xy
ln2[*] 将x=0,y=1代入得[*]=ln2-1,故dy|
x=0
=(ln2-1)dx. (3)x=0时,y=0. 对e
-y
+x(y-x)=1+x两边关于x求导得 -e
-y
y’+y-x+x(y’-1)=1,将x=0,y=0代入得y’(0)=-1; 对-e
-y
y’+y-x+x(y’-1)=1两边关于x求导,得 e
-y
(y’)
2
-e
-y
y’’+2(y’-1)+xy’’=0,将x=0,y=0,y’(0)=-1代入,得y’’(0)=-3. (4)x=0时,y=1. 对x-∫
1
x+y
e
-t
2
dt=0两边关于x求导得1-e
-(x+y)
2
.[*]=0, 将x=0,y=1,代入得[*]=e-1.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/k5D4777K
0
考研数学三
相关试题推荐
微分方程y’’-4y=x+2的通解为()
下列四个级数中发散的是()
设f(x)在[0,π]上连续,证明。
如果β=(1,2,t)T可以由α1=(2,1,1)T,α2=(一1,2,7)T,α3=(1,一1,一4)T线性表示,则t的值是__________。
若α1,α2线性无关,β是另外一个向量,则α1+β与α2+β()
设α,β均为三维列向量,β是βT的转置矩阵,如果αβT=,则αTβ=___________。
已知随机变量X,Y的概率分布分别为P{X=一1}=,P{X=0}=,P{X=1}=,P{Y=0}=,P{Y=1}=,P{Y=2}=,并且P{X+Y=1}=1,求:X与Y是否独立?为什么?
方程的特解形式(0,6,c,d是常数)为()
求下列方程满足给定条件的特解:yt+1一yt=2t,y0=3;
随机试题
下列不属于消费者权利的是()。
下列属于进境特许审批货物的有( )。
下列现金流量中,属于投资活动产生的现金流量的是()。
如存在具有支配性影响的关联方,下列情况中,可能表明存在由于舞弊导致的特别风险的有()。
如果没有闪电,人类将失去一位勤劳的“清洁工”。闪电交作时,大气中的部分氧气被激发成臭氧,稀薄的臭氧不但不臭,而且能吸收大部分宇宙射线,使地球表面的生物免遭紫外线过量照射的危害。闪电过程中产生的高温,又可杀死大气中90%以上的细菌和微生物,从而使空气变得更加
简述墨子的思想。
下列标点符号使用全正确的一项是:
(2015年)下列级数中发散的是()
(1)设x>0,y>0,z>0,求函数f(x,y,z)=xyz3在约束条件x2+y2+z2=5R2(R>0为常数)下的最大值;(2)由(1)的结论证明:当a>0,b>0,c>0时,
下列关于防火墙的说法中错误的是(29)。
最新回复
(
0
)