首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)的联合概率密度 令Z=max{X,Y},求: (1)Z的分布函数; (2)在X>x(x>0)的条件下,求P{Z≤z|X>x}.
设二维随机变量(X,Y)的联合概率密度 令Z=max{X,Y},求: (1)Z的分布函数; (2)在X>x(x>0)的条件下,求P{Z≤z|X>x}.
admin
2018-09-20
59
问题
设二维随机变量(X,Y)的联合概率密度
令Z=max{X,Y},求:
(1)Z的分布函数;
(2)在X>x(x>0)的条件下,求P{Z≤z|X>x}.
选项
答案
(1)[*]当x>0,y>0时, f
X
(x)=∫
-∞
+∞
f(x,y)dy=∫
0
+∞
6e
-2x-3y
dy=2e
-2x
,f
Y
(y)=∫
-∞
+∞
f(x,y)dx=∫
0
+∞
6e
2x-3y
dx=3e
-3y
, [*] 由此可见,X,Y相互独立,且分别服从参数为2和3的指数分布. X,Y的分布函数分别为: [*] 因为Z=max{X,Y},显然,当z<0时,F
Z
(z)=0, 当z≥0时, F
Z
(z)=P{max{X,Y}≤z}=P{X≤z,Y≤z}=F
X
(z)F
Y
(z)=(1一e
-2z
)(1一e
-3z
), 所以 [*] (2)由Z=max{X,Y}易知,当z≤x时,P{Z≤z|X>z}=0. 当z>x时, P{X>x,Z≤z}=P{x<X≤z,Y≤z}=P{x<X≤z)P{Y≤z} =(e
-2x
一e
-2z
)(1一e
-3z
), 从而P{Z≤z|X>x}=[*]=[1一e
-2(z-x)
](1一e
-3z
).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/jtW4777K
0
考研数学三
相关试题推荐
设二维连续型随机变量(X,Y)在区域D={(x,y)|x2+y2≤1}上服从均匀分布.(Ⅰ)问X与Y是否相互独立;(Ⅱ)求X与Y的相关系数.
设X和Y是相互独立的随机变量,其概率密度分别为其中λ>0,μ>0是常数,引入随机变量求E(Z)和D(Z).
设随机变量X与Y相互独立同分布,且X的概率分布为,记U=max(X,Y),V=min(X,Y),试求:(Ⅰ)(U,V)的分布;(Ⅱ)E(UV);(Ⅲ)ρUV.
设A2=A,A≠E(单位矩阵),证明:|A|=0.
证明下列不等式:
设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.求
设总体X~F(x,θ)=样本值为1,1,3,2,1,2,3,3,求θ的矩估计和最大似然估计.
设总体X~N(μ,σ2),X1,X2,…,Xn+1为总体X的简单随机样本,记服从的分布.
设总体X~N(μ,σ2),X1,X2,…,Xn是来自总体X的样本,令,求E(X1T).
设连续型随机变量X的分布函数为F(x)=求常数A,B;
随机试题
《前赤壁赋》是苏轼被贬至()时所作。
脂肪酸氧化过程中不需要的化合物是
为了保证商品运输的安全,商品运输包装件的长、宽、高都应满足所选择的()的要求。
根据印花税法律制度的有关规定,下列凭证中不属于印花税征税范围的是()。
依照《个人独资企业法》的规定,个人独资企业分:支机构的民事责任由( )。
甲曾任乙装修公司经理,2013年3月辞职。5月8日,为获得更多折扣,甲使用其留有的盖有乙公司公章的空白合同书,以乙公司名义与丙公司订立合同,购买总价15万元的地板,合同约定,6月7日丙公司将地板送至指定地点,乙公司于收到地板后3日内验货,地板经验收合格后,
直接记忆的容量大约为()组块。
现在建造大楼,第一步是搞设计,然后才有大楼的建成。设计就是求大楼之理,因此“理在事先”。这种观点是()。
A、Fromitswebsite.B、Fromitsadvertisement.C、Fromitsnewsletter.D、Fromitssalespeople.A事实细节题。本题询问男士可以从哪里了解这家公司的更多信息。对话开头
Playistheprinciplebusinessofchildhood,andmoreandmoreinrecentyears’researchhasshownthegreatimportanceofplay
最新回复
(
0
)