首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(94年)设有线性方程组 (1)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解; (2)设a1=a3=k,a2=a4=-k(k≠0),且已知β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通
(94年)设有线性方程组 (1)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解; (2)设a1=a3=k,a2=a4=-k(k≠0),且已知β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通
admin
2017-05-26
69
问题
(94年)设有线性方程组
(1)证明:若a
1
,a
2
,a
3
,a
4
两两不相等,则此线性方程组无解;
(2)设a
1
=a
3
=k,a
2
=a
4
=-k(k≠0),且已知β
1
=(-1,1,1)
T
,β
2
=(1,1,-1)
T
是该方程组的两个解,写出此方程组的通解.
选项
答案
(1)增广矩阵[*]为一方阵,其行列式显然为-4阶范德蒙行列式的转置: [*]=(a
2
-a
1
)(a
3
-a
1
)(a
4
-a
1
)(a
3
-a
2
)(a
4
-a
2
)(a
4
-a
3
) 由a
1
,a
2
,a
3
,a
4
两两不相等,知[*]≠0,从而知矩阵[*]的秩为4.但系数矩阵A为4×3矩阵,有r(A)≤3(或由A左上角的3阶子式不等于零知r(A)=3),故r(A)≠r([*]),因此方程组无解. (2)当a
1
=a
3
=k,a
2
=a
4
=-k(k≠0)时,方程组为 [*] 因为[*]=-2k≠0,故r(A)=r([*])=2,从而原方程组相容且它的导出方程组的基础解系应含有 3-2=1个解向量. 因为β
1
,β
2
是原非齐次方程组的两个解,故 ξ=β
1
-β
2
=[*] 是对应齐次方程组的解,且ξ≠0,故ξ是导出方程组的基础解系. 于是原非齐次方程组的通解为 X=β
1
+cξ=[*],(c为任意常数)
解析
转载请注明原文地址:https://www.kaotiyun.com/show/jtH4777K
0
考研数学三
相关试题推荐
设X2,X2,…,Xn相互独立的随机变量,且Xi(i=l,2,…,n)服从于参数为A的泊松分布,则
若随机变量X服从几何分布,且其数学期望为3,则方差D(X)=().
如果P(AB)=0,则下列结论中成立的是().
微分方程y"+y=cosx的一个特解的形式为y"=().
设有三维列向量(Ⅰ)β可由a1,a2,a3,线性表示,且表达式唯一;(Ⅱ)β可由a1,a2,a3线性表示,且表达式不唯一;(Ⅲ)β不能由a1,a2,a3线性表示.
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:矩阵B=(α,Aα,A4α)可逆;
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
设m与n是正整数,则=
已知fn(x)满足f’n(x)=fn(x)+xn-1ex(n为正整数),且fn(1)=,求函数项级数之和.
随机试题
巨人症及肢端肥大症常见于哪种类型垂体腺瘤
在零星费用报销支付现金的业务流程中,不涉及的控制要点是()
统计工作的基本步骤是
《药品管理法》规定,从事生产、销售假药的企业,其直接负责的主管人员和其他直接责任人员()
乙醇是常见的醇类消毒剂之一,浓度为()时其杀菌力最强。
关于对排水设施的要求,说法不正确的是()。
关于建设工程项目进度控制措施的说法,正确的有()。
业务操作中,监护人以未成年人名义申请贷款,并代其偿还的方式已成为个人住房按揭贷款潜在业务市场之一,银行对此类业务应大力推广。()
创建分组统计查询时,总计项应选择【】。
Hethrivedonacademiclife,workedhardatthecraftofcollegeteaching,andveryearlydisplayedatalentforbothresearcha
最新回复
(
0
)