首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知微分方程,作变换μ=x2+y2,v=,w=lnz-(x+y),其中w=w(μ,v),求经过变换后原方程化成的关于w,μ,v的微分方程的形式。
已知微分方程,作变换μ=x2+y2,v=,w=lnz-(x+y),其中w=w(μ,v),求经过变换后原方程化成的关于w,μ,v的微分方程的形式。
admin
2019-05-27
36
问题
已知微分方程
,作变换μ=x
2
+y
2
,v=
,w=lnz-(x+y),其中w=w(μ,v),求经过变换后原方程化成的关于w,μ,v的微分方程的形式。
选项
答案
[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/jcV4777K
0
考研数学二
相关试题推荐
已知则()
设u=f(x2+y2,xz),z=z(x,y)由ex+ey=ez确定,其中f二阶连续可偏导,求
设函数f(x)(x≥0)连续可导,且f(0)=1.又已知曲线y=f(x)、x轴、y轴及过点(x,0)且垂直于x轴的直线所围成的图形的面积值与曲线y=f(x)在[0,x]上的一段弧长值相等,求f’(x).
设f(x)在x0的邻域内三阶连续可导,且f’(x0)=f"(x0)=0,f’’’(x0)>0,则下列结论正确的是().
设A为三阶实对称矩阵,且存在正交矩阵又令B=A2+2E,求矩阵B.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2判断矩阵A可否对角化.
求y=∫0χ(1-t)arctantdt的极值.
设y=f(x)是区间[0,1]上的任一非负连续函数。(Ⅰ)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的梯形面积。(Ⅱ)又设f(x)在区间(0,1)内可导,且f’(x)>-2
已知动点P在曲线y=x3上运动,记坐标原点与点P间的距离为l。若点P的横坐标对时间的变化率为常数v0,则当点P运动到点(1,1)时,l对时间的变化率是_______。
(02年)设y=y(x)是二阶常系数微分方程y"+py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时.函数的极限.
随机试题
消化性溃疡所引起的疼痛表现为()
出口贸易中,采用信用证和托收方式收汇时,常用的汇票是()。
组织有责任保证工作人员及来访者的安全,因此必须对()等进行定期检查和维护。
知觉的特性包括()。
行政不作为是行政机关对于公民、法人和其他组织的符合条件的申请依法应该实施某种行为或履行某种法定职责却无正当理由拒绝履行或拖延履行的行政违法行为。下列选项中行政机关行为不属于行政不作为的是()。
“三个代表”重要思想是马克思主义中国化的最新理论成果,它与马克思列宁主义、毛泽东思想、邓小平理论是一脉相承的统一的科学理论。这种一脉相承具体表现在()。
冬天,医生检查牙齿时,常把小镜子放在酒精灯上适当烤一烤,然后再伸入口腔内。这样做的主要目的是()。
英荷战争
Whereisthisconversationprobablytakingplace?
Abondisissuedbyaguarantor,usuallyabankoraninsurancecompany,onbehalfofexporter.Itisaguaranteetothebuyert
最新回复
(
0
)