首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(x)是由方程2y3-2y2+2xy-x2=1确定的,求y=y(x)的驻点,并判定其驻点是否是极值点?
设y=y(x)是由方程2y3-2y2+2xy-x2=1确定的,求y=y(x)的驻点,并判定其驻点是否是极值点?
admin
2021-11-09
61
问题
设y=y(x)是由方程2y
3
-2y
2
+2xy-x
2
=1确定的,求y=y(x)的驻点,并判定其驻点是否是极值点?
选项
答案
(Ⅰ)先用隐函数求导法求出y’(x).将方程两边对x求导得 6y
2
y’-4yy’+2xy’+2y-2x=0, 整理得 [*] (Ⅱ)由y’(x)=0及原方程确定驻点.由y’(x)=0得y=x代入原方程得 2x
3
-2x
2
+2xx-x
2
=1,即x
3
-x
2
+x
3
-1=0,(x-1)(2x
2
+x+1)=0. 仅有根x=1.当y=x=1时,3y
2
-2y+x≠0.因此求得驻点x=1. (Ⅲ)判定驻点是否是极值点.将①式化为(3y
2
-2y+x)y’=x-y. ② 将②式两边对x在x=1求导,注意y’(1)=0,y(1)=1,得 2y’’(1)=1,y"(1)=[*]>0. 故x=1是隐函数y(x)的极小值点.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/jSy4777K
0
考研数学二
相关试题推荐
已知,且f(0)=g(0)=0,试求
设位于曲线下方、x轴上方的无界区域为G,则G绕x轴旋转一周所得立体的体积为.
设3维列向量组α1,α2,α3线性无关,γ1=α1+α2-α3,γ2=3α1-α2,γ3=4α1-α3,γ4=2α1—2α2+α3,则向量组γ1,γ2,γ3,γ4的秩为().
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续.②f(x,y)在点(x0,y0)处的两个偏导数连续.③f(x,y)在点(x0,y0)处可微.④f(x,y)在点(x0,y0)处的两个偏导
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在ε∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ε).
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在c∈(0,1),使得f(c)=1-2c
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’≠1,则=________.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解。
设三角形三边的长分别为a、b、c,此三角形的面积设为S.求此三角形内的点到三边距离乘积的最大值,并要求求出这三个相应的距离.
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是()
随机试题
DaydreamingI.DaydreamingcanbeharmfulbecauseitwasconsideredasA.awasteof【T1】______B.a【T2】______ofneur
—Ican’tthankyoutoomuch,MissJames.Whatyoudidhelpedmealot.—________,Carlos.
简述学校产生的条件。
引起胆囊收缩最重要的体液因素是
房地产周围安放的东西是否杂乱,如电线杆、广告牌,标示牌等的树立状态和设计是否美观,建筑物之间是否协调,公园、绿化等形成的景观是否赏心悦目,都对房地产价格有影响。()
某总承包单位将一医院的通风空调工程分包给某安装单位,工程内容有风系统、水系统和冷热(媒)设备。设备有7台风冷式热泵机组,9台水泵,123台吸顶式新风空调机组,1237台风机盘管,42台排风机,均由业主采购。通风空调工程的电气系统由总承包单位施工。通风空调设
李某为M公司经理,个人所得税由公司代扣代缴,2007年1月份税款为125元,公司代扣税款时应作如下会计处理( )。
科技创新可以分为()三种类型。
求
Consideringhowmuchhangoverscostcountriesandcompanies,nottomentionthepainpeoplesuffer,youwouldthinksomeonewoul
最新回复
(
0
)