首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(06年)设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
(06年)设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
admin
2019-07-12
54
问题
(06年)设函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)>0,△x为自变量x在x
0
处的增量,△y与dy分别为f(x)在点x
0
处对应的增量与微分,若△x>0,则
选项
A、0<dy<△y.
B、0<△y<dy.
C、△y<dy<0.
D、dy<△y<0.
答案
A
解析
dy=f’(x
0
)△x, △y=f(x
0
+△x)一f(x
0
)=f’(ξ)△x,x
0
<ξ<x
0
+△x由于f"(x)>0,则f’(x)单调增,从而有f’(x
0
)<f’(ξ),故dy<△y
由于f’(x)>0,△x>0,则0<dy<△y,故(A).
转载请注明原文地址:https://www.kaotiyun.com/show/jHc4777K
0
考研数学一
相关试题推荐
设曲线y=y(x)在点与直线4x-4y-3=0相切,且y=y(x)满足方程则该曲线在相应x∈[一1,1]上(x,y)点的曲率为______.
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,求证:(1)存在ξ∈(a,b),使f(ξ)+ξf’(ξ)=0;(2)存在η∈(a,b),使ηf(η)+f’(η)=0.
已知随机变量(X1,X2)的概率密度为f1(x1,x2),设Y1=2X1,Y2=X2,则随机变量(Y1,Y2)的概率密度f2(y1,y2)=()
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0,证明:存在ξ∈(a,b),使f’’(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g’’(ξ)=0.
已知向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r.证明:(Ⅰ)与(Ⅱ)等价.
设二维随机变量(U,V)的概率密度为又设X与Y都是离散型随机变量,其中X只取-1,0,1三个值,y只取-1,1两个值,且EX=0.2,EY=0.4.又P(X=-1,Y=1)=P{X=1,Y=-1)=P{X=0,Y=1}求:(1)(X,Y)
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于60000元的概率γ.
试确定常数a与n的一组值,使得当x→0时—ln[e(1+x2)]与axn为等价无穷小.
给定向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+b)T,β3=(2,1,a+4)T.当a为何值时(Ⅰ)和(Ⅱ)等价?a为何值时(Ⅰ)和(Ⅱ)不等价?
设A是一个n阶矩阵,先交换A的第i列与第j列,然后再交换第i行和第j行,得到的矩阵记成B,则下列五个关系①|A|=|B|;②r(A)=r(B);③A,B等价;④A~B;⑤A,B合同.其中正确的有()
随机试题
湿式系统在准工作状态时,由消防水箱或稳压泵、气压给水设备等稳压设施维持管道内充水的压力。()
Theageofgildedyouthisover.Today’sunderthirtiesarethefirstgenerationforacenturywhocanexpectalowerlivingsta
Forthispart,writingaparagraphinabout100-120wordsbasedonthefollowingsituation.RemembertowriteitclearlyonANS
与急性血吸虫病鉴别的疾病主要包括
慢性支气管炎患者的植物神经功能失调表现为
放坡基坑施工中,常用的护坡措施有()等。
某社区靠近市郊,绿树成荫,风景秀丽,居民生活非常惬意。但是,商业经济的发展逐渐影响着这里。为了给日益增多的汽车让路,路旁的绿化树被无情砍伐,一个接一个的建筑施工使附近的居民深受噪音、粉尘等的困扰,昔日颇有韵味的古建筑被商业区代替。宁静美丽的社区逐渐被繁杂与
以下不属于定性研究常用方法的是( )。
某教师想激发学生对高中政治的学习兴趣和热情,依据课程资源开发与利用的相关理论,请给该教师提几条建议。
Today,airtravelisfarsaferthan【B1】______acaronabusymotorway.Butthereisadangerthatgrowseveryyear.Fromthemom
最新回复
(
0
)