首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2017年] 设二次型f(x1,x2,x3)=2x12一x22+a32+2x1x2一8x1x3+2x2x3在正交变换X=QY,下的标准形为λ1y12+λ2y22,求a的值及一个正交矩阵Q.
[2017年] 设二次型f(x1,x2,x3)=2x12一x22+a32+2x1x2一8x1x3+2x2x3在正交变换X=QY,下的标准形为λ1y12+λ2y22,求a的值及一个正交矩阵Q.
admin
2019-07-23
104
问题
[2017年] 设二次型f(x
1
,x
2
,x
3
)=2x
1
2
一x
2
2
+a
3
2
+2x
1
x
2
一8x
1
x
3
+2x
2
x
3
在正交变换X=QY,下的标准形为λ
1
y
1
2
+λ
2
y
2
2
,求a的值及一个正交矩阵Q.
选项
答案
(1)[*],令[*],则f(x
1
,x
2
,x
3
)=X
T
AX. 由于标准形为λ
1
y
1
2
+λ
2
y
2
2
,可知矩阵A有零特征值,即λ
3
=0,故|A|=0,即|A|=[*]=一3(a一2)=0,解得a=2. (2)由|λE—A|=[*]=λ(λ+3)(λ一6)=0,得λ
1
=一3,λ
2
=6,λ
3
=0. 当λ
1
=一3时,一3E—A→[*],得λ
1
=一3对应的线性无关的特征向量为α
1
=[*] 当λ
2
=6时,6E-A=[*],得λ
2
=6对应的线性无关的特征向量α
2
=[*] 由0E—A→[*],得λ
3
=0对应的线性无关的特征向量α
3
=[*] 规范化得[*] 故正交矩阵[*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/j5c4777K
0
考研数学一
相关试题推荐
A、f(x)是增函数,g(x)是减函数B、f(x)是减函数,g(x)是增函数C、f(x)与g(x)都是增函数D、f(x)与g(x)都是减函数D
设电子管寿命X的概率密度为若一台收音机上装有三个这种电子管,求:使用的最初150小时内,至少有两个电子管被烧坏的概率;
曲面x2+cos(xy)+yz+x=0在点(0,1,-1)处的切平面方程为
求曲线处的切线与y轴的夹角.
设随机变量X的概率密度为已知EX=2,P{1<X<3}=,求a,b,c的值;
求积分,其中Ω为球面x2+y2+z2=z所围的球体.
设随机变量X服从参数为λ>0的指数分布,且X的取值于区间[1,2]上的概率达到最大,试求λ的值.
随机地取某种炮弹9发做试验,得炮口速度的样本标准差S=11,设炮口速度服从正态分布,求这种炮弹的炮口速度的标准差的置信度为0.95的置信区间.
设A为实矩阵,证明ATA的特征值都是非负实数.
设A=(1)问k为何值时A可相似对角化?(2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
随机试题
下列关于犯罪嫌疑人、被告人申请法律援助说法错误的是()。
在Word文档的编辑中,能够进行的工作是
下列关于MicrosoftInternetExplorer的叙述,正确的是()。
请根据所提供的单据,完成相关的判断题。东莞三星视界有限公司与韩国一家公司签订一份购货合同,合同规定中方从韩方购买一批电池芯,用于生产加工电子钟,货物于2006年6月15日到达深圳口岸。东莞该公司报检员持合同、发票、提单向深圳检验检疫机构报检。
对下列历史事件发生背景描述准确的是()。
下列成语与古代事件对应正确的一组是:
甲、乙一同栽树要8小时完成,甲先栽3小时,乙再栽1小时,还剩没有完成。已知甲比乙每小时多栽7棵树,问这批树共有多少棵?()
设X1,X12,X3,X4是来自总体X的样本,EX=μ,则()是μ的最有效估计。[浙江工商大学2012研]
设A,B都是n阶正定矩阵,则:AB是正定矩阵A,B乘积可交换.
Asawidelyusedfinancialstatement,abalancesheetshowsthefinancialpositionofabusinessataspecificdate,andeveryb
最新回复
(
0
)