首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为满足AB=O的任意两个非零矩阵,则必有
设A,B为满足AB=O的任意两个非零矩阵,则必有
admin
2017-04-24
60
问题
设A,B为满足AB=O的任意两个非零矩阵,则必有
选项
A、A的列向量组线性相关,B的行向量组线性相关.
B、A的列向量组线性相关,B的列向量组线性相关.
C、A的行向量组线性相关,B的行向量组线性相关.
D、A的行向量组线性相关,B的列向量组线性相关.
答案
A
解析
设A按列分块为A=[α
1
α
2
… α
n
],由B≠0知B至少有一列非零,设B的第j列(b
1j
,b
2j
,…,b
nj
)
T
≠0,则AB的第j列为
[α
1
α
2
… α
n
]
即 b
1j
α
1
+b
2j
α
2
+…+b
nj
α
n
=0,因为常数b
1j
,b
2j
,…,b
nj
不全为零,故由上式知A的列向量组线性相关,再由A=0取转置得B
T
A
T
=0,利用已证的结果可知B
T
的列向量组——即B的行向量组线性相关,故(A)正确.
设B按列分块为B=[β
1
β
2
… β
p
],则由
O=AB=A[β
1
β
2
…β
p
]=[Aβ
1
Aβ
2
…Aβ
p
]
得Aβ
j
=0,j=1,2,…,β,即矩阵B的每一列都是齐次线性方程组Ax=0的解向量,因B≠0,知B至少有一列非零,故方程组Ax=0有非零解,因此A的列向量组线性相关.B的行向量组线性相关的推导同解1.
注释 如果将B按行分块为B=
,则AB =0的第i行为[a
i1
a
i2
… a
ln
]
=a
i1
γ
1
+a
i2
γ
1
+…+a
ln
γ
n
=0,由此及A≠0也可推出B的行向量组线性相关.本题所用的关于乘积矩阵的按列(行)表示方法是一种重要方法,在讨论矩阵的秩、线性方程组及向量的有关问题中常常用到.
转载请注明原文地址:https://www.kaotiyun.com/show/iyt4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上二阶可导且f"(x)>0,证明:f(x)在(a,b)内为凹函数.
证明:当x>0时,x/(1+x)<ln(1+x)<x.
设f(x)在[0,2]上连续,在(0,2)内可导,且2f(0)=f(1)+f(2),证明:存在ξ∈(0,2),使得f’(ξ)=0.
函数f(x)=x2-3x+4在[1,2]上满足罗尔定理的中值ξ=________.
设y=ex是微分方程xy’+p(x)y=x的一个解,求此微分方程满足条件y|x=ln2=0的特解。
设y1,y2是二阶常系数线性齐次方程y"+p(x)y’+q(x)y=0的两个特解,则由y1(x)与y2(x)能构成该方程的通解,其充分条件是________。
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求n的值;
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
随机试题
图示钢质圆截面细长压杆,直径d=25mm,材料的弹性模量E=200GPa,试求杆的临界压力。
初孕妇李某,27岁,妊娠30周,前来医院进行产前检查,做骨盆外测量,下列哪条径线低于正常
A、<0.3ppmB、0.4~0.6ppmC、0.7~1.0ppmD、1.5ppmE、2~4ppm需要饮水加氟预防龋齿的氟浓度是
合同履行应遵循的原则()。
县级以上()有权撤销本级人民政府有关公安工作不适当的决定或者命令,并依法享有受理人民群众对公安机关及其人民警察提出申诉和意见的监督权。
根据增值税的有关规定,可选择按小规模纳税人纳税的有()。
十七大回答了党在改革发展关键阶段的重大问题有()。
TheChildrenRestaurantisverysmallbecause______.TheChildrenRestaurantopens______.
Whatattractscustomers?Obviouslythequalityofaproductdoes,butvisualimages【61】agreatdeal.Itisnotonlytheimagepr
Theriseofmultinationalcorporations(跨国公司),globalmarketing,newcommunicationstechnologies,andshrinkingculturaldiffere
最新回复
(
0
)