首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=(a1,a2,…,an)T,其中a1≠0,A=ααT. (1)求方程组AX=0的通解; (2)求A的非零特征值及其对应的线性无关的特征向量.
设向量α=(a1,a2,…,an)T,其中a1≠0,A=ααT. (1)求方程组AX=0的通解; (2)求A的非零特征值及其对应的线性无关的特征向量.
admin
2017-12-31
77
问题
设向量α=(a
1
,a
2
,…,a
n
)
T
,其中a
1
≠0,A=αα
T
.
(1)求方程组AX=0的通解;
(2)求A的非零特征值及其对应的线性无关的特征向量.
选项
答案
(1)因为r(A)=1,所以AX=0的基础解系含有n-1个线性无关的特征向量,其基础解系为 [*], 则方程组AX=0的通解为k
1
α
1
+k
2
α
2
+…+k
n-1
α
n-1
(k
1
,k
2
,…,k
n-1
为任意常数). (2)因为A
2
=kA,其中k=(α,α)=[*]>0.所以A的非零特征值为k, 因为Aα=αα
T
α=kα,所以非零特征值k对应的线性无关的特征向量为α.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/iXX4777K
0
考研数学三
相关试题推荐
设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(A)的必要条件是f(a,b)=0,f’x(a,b)=0,f’y(a,b)≠0.且当r(a,b)>0时,b=φ(A)是极大值;当r(a,
特征根为r1=0,r2,3=的特征方程所对应的三阶常系数齐次线性微分方程为________.
设四元齐次线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[一1,2,2,1]T.求线性方程组(Ⅰ)的基础解系;
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
设A为n阶非零矩阵,E为n阶单位矩阵,若A_______=0,则【】
设n阶矩阵A非奇异(行≥2),A*是矩阵A的伴随矩阵,则【】
设4维向量组α1=(1+α,1,1,1)T,α2=(2,2+α,2,2)T,α3=(3,3,3+α,3)T,α4=(4,4,4,4+α)T,问α为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设有任意两个n维向量组α1,…,αm和β1,…,βm,若存在两组不全为零的数λ1,…,λm和k1,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1一k1)β1+…+(λm一km)βm=0,则【】
已知向量α=(1,k,1)T是矩阵的逆矩阵A-1的特征向量,试求常数志的值及与α对应的特征值。
随机试题
颈部脂肪瘤的超声特点有
血瘀气结型积聚治疗时所用主方为痰瘀互结型积聚治疗时所用主方为
某校长甲欲将一套住房以50万元出售。某报记者乙找到甲,出价40万元,甲拒绝。乙对甲说:“我有你贪污的材料,不答应我就攀报你。”甲信以为真,以40万元将该房卖与乙。乙实际并无甲贪污的材料。关于该房屋买卖合同的效力,下列哪一说法是正确的?(2010年卷三第5题
BtoC型电子商务是企业与消费者之间的电子交易业务。()
下列关于《个人信用信息基础数据库管理暂行办法》的说法中,错误的是()。
企业规划中起决定性作用的是()规划。
皮亚杰的认知发展观属于()
判断如下命题是否正确:设无穷小un~vn(n→∞),若级数也收敛.证明你的判断.
行列式=___________
Thefinalquarterofthenineteenthcenturymarkedaturningpointinthehistoryofbiology—biologistsbecamelessinterestedi
最新回复
(
0
)