首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1*=xex+e2x,y2*=xex+e-x,y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
已知y1*=xex+e2x,y2*=xex+e-x,y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
admin
2018-06-15
98
问题
已知y
1
*
=xe
x
+e
2x
,y
2
*
=xe
x
+e
-x
,y
3
*
=xe
x
+e
2x
-e
-x
是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
选项
答案
易求得该微分方程相应的齐次方程的两个特解 y
1
*
-y
3
*
=e
-x
,y
2
*
-y
3
*
=2e
-x
-e
2x
. 进一步又可得该齐次方程的两个特解是 y
1
=e
-x
,y
2
=2(y
1
*
-y
3
*
)-(y
2
*
-y
3
*
)=e
2x
, 它们是线性无关的.为简单起见,我们又可得该非齐次方程的另一个特解 y
4
*
=y
1
*
-y
2
=xe
x
. 因此该非齐次方程的通解是y=C
1
e
-x
+C
2
e
2x
+xe
x
,其中C
1
,C
2
为任意常数. 由通解结构易知,该非齐次方程是:二阶线性常系数方程 y"+py’+gy=f(x). 它的相应特征根是λ
1
=-1,λ
2
=2,于是特征方程是 (λ+1)(λ-2)=0,即λ
2
-λ-2=0. 因此方程为y"-y’-2y=f(x). 再将特解y
4
*
=xe
x
代入得 (x+2)e
x
-(x+1)e
x
-2xe
x
=f(x),即 f(x)=(1-2x)e
x
因此方程为y"-y’-2y=(1-2x)e
x
.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/iWg4777K
0
考研数学一
相关试题推荐
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,求证:存在η∈(a,b),使ηf(η)+f’(η)=0.
设fn(x)=1-(1-cosx)n,求证:对于任意Ⅱ:整数n,fn(x)=中仅有一根;
求
设A=,求实对称矩阵B,使A=B2.
A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,试证明:aij=AATA=E,且|A|=1;
A为何值时,方程组无解,有唯一解或有无穷多解?并在有无穷多解时写出方程组的通解.
设向量组α1,α4,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1讨论向量组β1,β2,…,βs的线性相关性.
设平面区域σ由σ1与σ2组成,其中,σ1={(x,y)|0≤y≤a-x,0≤x≤a),σ2={(x,y)|a≤x+y≤b,x≥0,y≥0),如图1.6-1所示,它的面密度试求薄片σ1关于y轴的转动惯量J1与σ2关于原点的转动惯量J0
设φ(y)为连续函数.如果在围绕原点的任意一条逐段光滑的正向简单封闭曲线l上,曲线积分其值与具体l无关,为同一常数k.如果φ(y)具有连续的导数,求φ(y)的表达式.
设A,B是两个随机事件,且P(A)=0.4,P(B)=0.5,P(A|B)==___________.
随机试题
WHO认为,一个有代表性的社区,其人口数大约在
酚妥拉明可用于治疗顽固性充血性心力衰竭的主要原因是
选择药物治疗前列腺增生时,下列哪种药物效果好,起效快,是目前最常应用的
气体交换的场所是()
热力管道架空敷设的缺点有()。
与个人决策相比,团体决策的优点有()。
订货提前期是指()为止的一段时间
八一宣言
如何将社区工作应用到我国当前的社区居委会工作中?(河北大学2011年研)
Whenwetalkaboutintelligence,wedonotmeantheabilitytogetagoodscoreonacertainkindoftest,oreventheabilityt
最新回复
(
0
)