首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αα5均为n维列向量,A为m×n矩阵,下列选项正确的是( ).
设α1,α2,…,αα5均为n维列向量,A为m×n矩阵,下列选项正确的是( ).
admin
2020-06-05
29
问题
设α
1
,α
2
,…,αα
5
均为n维列向量,A为m×n矩阵,下列选项正确的是( ).
选项
A、若α
1
,α
2
,…,α
5
线性相关,则Aα
1
,Aα
2
,…,Aα
5
线性相关
B、若α
1
,α
2
,…,α
5
线性相关,则Aα
1
,Aα
2
,…,Aα
5
线性无关
C、若α
1
,α
2
,…,α
5
线性无关,则Aα
1
,Aα
2
,…,Aα
5
线性相关
D、若α
1
,α
2
,…,α
5
线性无关,则Aα
1
,Aα
2
,…,Aα
5
线性无关
答案
A
解析
方法一
因为(Aα
1
,Aα
2
,…,Aα
s
)=A(α
1
,α
2
,…,α
s
),记为C=AB,由矩阵秩的性质
R(C)=R(AB)≤min{R(A),R(B)}
所以,若R(B)﹤s,则必有R(C)﹤s.也就是说若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
方法二
取A=0,则选项(B),(D)不成立;若取A=E,则选项(C)不成立.
方法三
因为α
1
,α
2
,…,α
s
线性相关,所以存在一组不全为零的数k
1
,k
2
,…,k
s
,使得
k
1
α
1
+k
2
α
2
+…+k
s
α
s
=0
从而 A(k
1
α
1
+k
2
α
2
+…+k
s
α
s
)=0
即 k
1
(Aα
1
)+k
2
(Aα
2
)+…+k
s
(Aα
s
)=0
由此存在一组不全为零的数k
1
,k
2
,…,k
s
使得上式成立,所以Aα
1
,Aα
2
,…,Aα
s
线性相关.
转载请注明原文地址:https://www.kaotiyun.com/show/i8v4777K
0
考研数学一
相关试题推荐
微分方程y"+y=x2+1+sinx的特解形式可设为
n阶实对称矩阵A正定的充分必要条件是()
设A为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如图所示,则A的正特征值的个数为]()
设A,B均是3阶非零矩阵,满足AB=O,其中则()
n阶矩阵A和B具有相同的特征值是A和B相似的()
设A=(α1,α2,α3,α4)为四阶方阵,且α1,α2,α3,α4为非零向量组,设AX=0的一个基础解系为(1,0,一4,0)T,则方程组A*X=0的基础解系为().
设的一个特征向量.矩阵A可否相似对角化?若A可对角化,对A进行相似对角化;若A不可对角化,说明理由.
(Ⅰ)求幂级数的收敛半径、收敛区间及收敛域,并求收敛区间内的和函数.(Ⅱ)求数项级数的和,应说明理由.
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)],试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
设A是一个n阶方阵,满足A2=A,R(A)=s且A有两个不同的特征值.计算行列式|A-2E|.
随机试题
蒸馏酒中铅的污染主要来源于
简述所有者权益的概念及特点。
墙承重结构主要是指()。
检验手册的含义是()。
某公安派出所查扣了一个体户的一批牛仔裤,并以假冒商标、违反商标管理规定为由对该个体户作出没收全部货物的处罚,还对生产牛仔裤的厂家罚款二万元。当事人不服。向人民法院提起诉讼。诉讼期间,该派出所的上级(公安局)及时撤销了派出所的行政处罚决定,并退回货物、罚款。
某市某区公安分局认定赵某有嫖娼行为,对其处以拘留15天,罚款3000元。赵某不服申请复议,市公安局维持了原处罚决定。赵某提起行政诉讼。在第一审程序中,原处罚机关认定赵某有介绍嫖娼行为,将原处罚决定变更为罚款1000元。赵某对改变后的处罚决定仍不服。下列说法
IthinkthatIcommitteda______inaskingherbecausesheseemedveryupsetbymyquestion.(2011年四川大学考博试题)
I’dratherthatyou______tomorrowthantoday.
Cellscannotremainaliveoutsidecertainlimitsoftemperatureandmuchnarrowerlimitsmarktheboundariesofeffectivefunc
(1)Aswehurtletowardsmenewmillennium,whatisthebettersymboloftherelentlesspassageoftimethanmeancientsundial?
最新回复
(
0
)