首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,证明: (I)r(A)=1的充分必要条件是存在n阶非零列向量a,β,使得A=aβT; (Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
设A是n阶矩阵,证明: (I)r(A)=1的充分必要条件是存在n阶非零列向量a,β,使得A=aβT; (Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
admin
2021-10-02
88
问题
设A是n阶矩阵,证明:
(I)r(A)=1的充分必要条件是存在n阶非零列向量a,β,使得A=aβ
T
;
(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
选项
答案
(I)若r(A)=1,则A为非零矩阵且A的任意两行成比例,即 [*] 于是A=[*](b
1
,b
2
,…,b
n
),令a=[*],显然a,β都不是零向量且A=aβ
T
; 反之,若A=aβ
T
,其中A,β都是n维非零列向量,则r(A)=r(aβ
T
)≤r(a)=1,又因为a,β为非零列向量,所以A为非零矩阵,从而r(A)≥1,于是r(A)=1. (Ⅱ)因为r(A)=1,所以存在非零列向量a,J=β,使得A=aβ
T
,显然tr(A)=(a,β),因为tr(A)≠0,所以(a,β)=k≠0. 令AX=λX,因为A
2
=kA,所以λ
2
X=kλX,或(λ
2
一k
λ
)X=0,注意到X≠0,所以矩阵A 的特征值为λ=0或λ=k.因为λ
1
+λ
2
+…+λ
n
=tr(A)=k,所以λ
1
=k,λ
2
=λ
3
=…λ
n
=0,由r(OE—A)=r(A)=1,得A一定可以对角化.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/i7x4777K
0
考研数学三
相关试题推荐
设总体X~N(μ,22),X1,X2,…,Xn为取自总体的一个样本,为样本均值,要使E(-μ)2≤0.1成立,则样本容量n至少应取_______.
设f(x)在[0,1]上二阶连续可导,且f’(0)=f’(1).证明:存在ξ∈(0,1),使得
设则有
已知(aχy3-y2cosχ)dχ+(1+bysinχ+3χ2y2)dy是某一函数的全微分,则a,b取值分别为【】
已知一批零件的长度X(单位为cm)服从正态总体N(μ,1),从中随机抽取16个零件,测得其长度的平均值为40cm,则μ的置信度为0.95的置信区间是(注:标准正态分布函数值Ф(1.96)=0.975,Ф(1.645)=0.95)().
设D是x0y平面上以(1,1),(一1,1)和(一1,一1)为顶点的三角形域,D1是D在第一象限的部分,则等于
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则().
假设随机变量X1,X2,…相互独立且服从同参数λ的泊松分布,则下面随机变量序列中不满足切比夫大数定律条件的是
设当事件A与B同时发生时,事件C必发生,则
设随机变量X~N(μ,σ2),σ>0,其分布函数F(x)的曲线的拐点为(a,b),则(a,b)为()
随机试题
麻黄碱短期内反复应用产生快速耐受性的原因是
建国初期,中国共产党在土地改革中对富农的政策是( )
县级以上各级政府决算草案经本级人民代表大会常务委员会批准后,本级政府财政部门应当自批准之日起()日内向本级各部门批复决算。
下列哪种()是从经济学、金融学、财务管理学及投资学等基本原理推导出的。
根据有关规定,()是基金管理公司的一项法定权利,其他任何机构不得从事该活动。
第三方存管模式下,存管银行负责()。
以下对购买性支出和转移性支出的表述中,正确的是()。
有些工程师有博士学位,因此,有些获得博士学位的人技术水平很高。为了使上述推理成立,必须补充以下哪项作为前提?
Asurveyhasfoundthatonlyathirdofemployeesplannedtostayintheirjobin2020,withlackoffeedbackbeingakeyfactor
Seekingtoframehisnewadministrationasonewithafirmfocusonclosingthegapbetweenchildrenfromaffluentandpoorfami
最新回复
(
0
)