首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上可导且满足f(0)=. 证明:至少存在一点ξ∈(0,1),使得f’(ξ)+f(ξ)=0.
设f(x)在[0,1]上可导且满足f(0)=. 证明:至少存在一点ξ∈(0,1),使得f’(ξ)+f(ξ)=0.
admin
2016-05-03
79
问题
设f(x)在[0,1]上可导且满足f(0)=
.
证明:至少存在一点ξ∈(0,1),使得f’(ξ)+f(ξ)=0.
选项
答案
有两种证明方法. 从结论推上去,要证明存在一点ξ∈(0,1),使得 f’(ξ)+f(ξ)=0, 即e
ξ
f’(ξ)+e
ξ
f(ξ)=0,即证明存在ξ∈(0,1),使得 [e
ξ
f(ξ)]’=0. 令F(x)=e
x
f(x),要证存在ξ∈(0,1)使得F’(ξ)=[e
x
f(x)]’|
x=ξ
=0.为此,只要验证F(x)在[0,1]上满足罗尔定理即可.由于 [*] 即 F(0)=F(η),0<η<1. 所以存在ξ∈(0,η)[*](0,1),使得F’(ξ)=0,即 e
ξ
f’(ξ)+e
ξ
f(ξ)=0. 因e
ξ
≠0,上式等价于f’(ξ)+f(ξ)=0.证毕.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/hhT4777K
0
考研数学三
相关试题推荐
针对抗日战争进入相持阶段后统一战线内部出现的危机,中国共产党提出的三大口号是()。
马克思、恩格斯在《共产党宣言》1872年德文版序言中指出,“不管最近25年来的情况发生了多大的变化,这个《宣言》中所阐述的一般原理整个说来直到现在还是完全正确的……这些原理的实际运用,正如《宣言》中所说的,随时随地都要以当时的历史条件为转移。”这一论述,实
经济社会是一个动态循环系统,不能长时间停摆。在确保疫情防控到位的前提下,推动非疫情防控重点地区企事业单位复工复产,恢复生产生活秩序,关系到为疫情防控提供有力物质保障,关系到()。
设β,α1,α2线性相关,β,α2,α3线性无关,则().
设向量α=α1+α2+…+αs(s>1),而β1=α-α1,β2=α-α2,…,βs=α-αs,则().
设向量组B:β1,β2,…,βr能由向量组A:α1,α2,…,αs线性表示为:其中,K为r×s矩阵,且向量组A线性无关,证明:向量组B线性无关的充要条件是矩阵K的秩r(K)=r.
求下列微分方程的通解(1)xyˊ+y-2y3=0;(2)xyˊlnx+y=x(1+lnx);(3)yˊ+ex(1-e-y)=0;(4)yy〞-yˊ2-1=0.
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
设A是n阶矩阵,α是n维列向量,若秩=秩(A),则线性方程组
随机试题
通过腕管的结构有()
在设计弯曲件的尺寸精度较高的弯曲模时,模具的工作部分应设计成可调的。
A.吸气末B.呼气末C.两者皆是D.两者皆非存在弹性阻力的呼吸状态是
A.有裂殖增殖、配子生殖、孢子生殖三个阶段,裂殖增殖和配子生殖在宿主体内完成,孢子生殖在外界完成B.出芽生殖或二分裂繁殖在中间宿主体内进行;裂体生殖和配子生殖在终末宿主体内进行;孢子生殖在外界环境中进行C.有裂体生殖,配子生殖和孢子生殖三阶段,均在宿主
资产负债表中应付账款项目的期末数应根据( )所属明细账的期末贷方余额之和填列。
工资指导线的制定要符合国家宏观经济政策和对工资增长的总体要求,应坚持()原则。
一般来说,电热毯的使用寿命为6年,如果超期使用,容易出现漏电、失火事故,高压锅安全使用年限为8年,如果超出安全使用期,高压锅的抗压能力会明显下降,继续使用就容易发生爆炸事故。据此,可以有四个推论:(1)小赵5年前购买了高压锅,目前还在使用,如果不立即更换,
废两改元
若某二叉树的前序遍历访问顺序是abdgcefh,中序遍历访问顺序是dgbaechf,则其后序遍历的结点访问顺序是
Adealofattentionisbeingpaidtodaytotheso-calleddigitaldivide—thedivisionoftheworldintotheinfo(information)ri
最新回复
(
0
)