首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知n(n≥4)维向量组(I)α1,α2线性无关,(Ⅱ)β1,β2线性无关,且α1,α2分别与β1,β2正交,证明:α1,α2,β1,β2线性无关.
已知n(n≥4)维向量组(I)α1,α2线性无关,(Ⅱ)β1,β2线性无关,且α1,α2分别与β1,β2正交,证明:α1,α2,β1,β2线性无关.
admin
2017-10-19
52
问题
已知n(n≥4)维向量组(I)α
1
,α
2
线性无关,(Ⅱ)β
1
,β
2
线性无关,且α
1
,α
2
分别与β
1
,β
2
正交,证明:α
1
,α
2
,β
1
,β
2
线性无关.
选项
答案
考察 k
1
α
1
+k
2
α
2
+λ
1
β
1
+λ
2
β
2
=0. 两边分别对α
1
,α
2
作内积,由于(α
1
,β
1
)=0,(α
1
,β
2
)=0,(α
2
,β
1
)=0,(α
2
,β
2
)=0, 故得齐次方程组 [*] =(α
1
,α
1
)(α
2
,α
2
)一(α
1
,α
2
)
2
, 根据柯西一施瓦兹不等式,当α
1
,α
2
线性无关时,有(α
1
,α
2
)
2
<(α
1
,α
1
)(α
2
,α
2
),故方程组的系数行列式大于零(不等于零),方程组有唯一零解k
1
=k
2
=0,代入原式得 λ
1
β
1
+λ
2
β
2
=0. 由β
1
,β
2
线性无关,故λ
1
=λ
2
=0,从而k
1
=k
2
=λ
1
=λ
2
=0,故α
1
,α
2
,β
1
,β
2
线性无关. 51.解 因为矩阵A有三个线性无关的特征向量,λ=5是矩阵A的二重特征值,故λ=5必有两个线性无关的特征向量,因此r(5E—A)=1.由 5E—A=[*] 得a=0,b=一1.又因 5+5+λ
3
=1+3+5, 知矩阵A的特征值是λ
1
=λ
2
=5,λ
3
=一1. 又|A|=λ
1
.λ
2
.λ
3
=一25,伴随矩阵A
*
的特征值为[*](i=1,2,3),即一5,一5,
解析
转载请注明原文地址:https://www.kaotiyun.com/show/hZH4777K
0
考研数学三
相关试题推荐
=__________
设f(x)=,则当x→0时,f(x)是g(x)的().
甲、乙、丙厂生产产品所占的比重分别为60%,25%,15%,次品率分别为3%,5%,8%,求任取一件产品是次品的概率.
设z=f(x2+y2,xy,x),其中f(u,v,w)二阶连续可偏导,求
游客乘电梯从底层到顶层观光,电梯于每个整点的5分、25分、55分从底层上行,设一游客早上8点X分到达底层,且X在[0,60]上服从均匀分布,求游客等待时间的数学期望.
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
证明:当0<x<1时,(1+x)ln2(1+x)<x2.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与,求y=y(x).
设y(x)=求(2x)2n一(|x|<1)的和函数及级数的值.
设函数f(x)连续,且∫0xtf(2x—t)dt=,已知f(1)=1,求∫12f(x)dx的值.
随机试题
患者,女性,21岁。上班途中不慎掉人污水沟,会阴部有擦伤,未做处理。第3日体温39.2摄氏度,且感会阴部肿痛。此时最可能的是
患者,男性,15岁。右腋下起白斑3个月,发展缓慢,无不适。体检:上述部位可见一2cm×3cm大小牛奶样白斑。界限清楚、有少许色素沉着,表面光滑,摩擦后白斑呈淡红色,局部部分腋毛变白。最可能的诊断是
我国封闭式基金在达成交易后,二级市场交易份额和股份的交割是在T+0日,资金交割是在()日完成。
下列不属于银行业从业人员的六条从业基本准则的是()
在中国艺术的各个门类中,书法是最具中国特色而为西方没有的传统艺术。()
如果一个公司中小道消息很多,而正式沟通的信息较少,这意味着该组织()
下列不属于课程标准对初中美术学习活动建议的是()。
RobertJ.OppenheimerwasafamousAmericanphysicist,whodirectedthedevelopmentofthefirstatomicbombs.Oppenheimerw
[2007年GRK真题]某地区国道红川口曾经是交通事故的频发路段,自从8年前对此路段限速每小时60公里后,发生在此路段的交通伤亡人数大幅下降。然而,近年来此路段超速车辆增多,但发生在此路段的交通伤亡人数仍然下降。上述断定最能支持以下哪项结论?
在TCSEC标准中强制保护指的是第______标准。
最新回复
(
0
)