首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)上有界,且存在二阶导数.试证明:至少存在一点ξ∈(一∞,+∞)使f’’(ξ)=0.
设f(x)在(一∞,+∞)上有界,且存在二阶导数.试证明:至少存在一点ξ∈(一∞,+∞)使f’’(ξ)=0.
admin
2014-04-16
76
问题
设f(x)在(一∞,+∞)上有界,且存在二阶导数.试证明:至少存在一点ξ∈(一∞,+∞)使f
’’
(ξ)=0.
选项
答案
用反证法,设对一切xE(一∞,+∞),f
’’
(x)≠0,则要么对一切xE(一∞,+∞),f
’’
(x)>0,或者对一切x∈(一∞,+∞),f
’’
(x)<0.不妨设对一切x∈(一∞,+∞),f
’’
(x)>0.有以下两种解法:法一取x
1
使f
’
(x
1
)≠0.这种x
1
总存在的,因若不存在,则f
’
(x)≡0,从而与反证法的前提矛盾,取好x
1
之后,将f(x)在x=x
1
处按泰勒公式展开至n=1,有[*]若f
’
(x
1
)>0,令上式中的x→+∞;若f
’
(x
1
)<0,令上式中的x→一∞,总有[*],与f(x)在(一∞,+∞)上有界矛盾.此矛盾证明了反证法的前提有错,故知存在ξ∈(一∞,+∞)使f
’’
(ξ)=0.法二由对一切x∈(一∞,+∞),f
’’
(x)>0,故知对一切x,f
’
(x)严格单调增加.取x
1
使f
’
(x
1
)>0(若不然,取x
1
使f
’
(x
1
)<0),由拉格朗日中值定理,当x>x
1
时,有f(x)=f(z1)+f
’
(η)(x-x
1
)>f(x
1
)+f
’
(x
1
)(x-x
1
),令x→∞,得f(x)→∞,与f(x)有界矛盾.若f
’
(x
1
)<0,则当x<x
1
时,有f(x)=f(x
1
)+f
’
(η)(x-x
1
)>f(x
1
)+f
’
(x
1
)(x-x
1
),令x→一∞,得f(x)→+∞,与f(x)有界矛盾.此矛盾证明了反证法的前提有错,故知存在ξ∈(一∞,+∞),使f
’’
(ξ)=0.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/hX34777K
0
考研数学二
相关试题推荐
(16年)级数sin(n+k)(k为常数)【】
(98年)设周期函数f(χ)在(-∞,+∞)内可导,周期为4,又=-1,则曲线y=f(χ)在点(5,f(5))处的切线斜率为【】
A、 B、 C、 D、 C
(1998年)设周期函数f(x)在(一∞,+∞)内可导,周期为4,又,则曲线y=f(x)在点(5,f(5))处的切线斜率为()
(2002年)设常数=_____。
设A为二阶矩阵,P=(a,Aa),其中a是非零向量且不是A的特征向量.若A2a+Aa-6a=0.求P-1AP,并判断A是否相似于对角矩阵.
(2002年)求极限
设A=,B为三阶非零矩阵,为BX=0的解向量,且AX=α3有解,(Ⅰ)求常数a,b;(Ⅱ)求BX=0的通解。
随机试题
在Windows系统中,若希望对显示器属性进行设置,可以在()中的显示器程序中进行操作。
下述哪一项不是导致骨折延迟愈合的因素
A、甘苦寒B、甘辛温C、苦酸凉D、甘辛寒E、甘咸温鹿茸的主要性味是()
以下属于位置平均数的是()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。()
()的资料档案收集与入住期物业管理工作密切相关,须同步进行。
关于“资本主义世界危机和罗斯福新政”一课中的教学重难点,某位中学历史教师是这样编写的:教学重点:罗斯福就任总统的原因、罗斯福新政的评价与意义。教学难点:罗斯福新政的内容。(1)此教学重难点编排上有何问题。(2)教学重难点的概念及编排依据
互联网怎样影响了我们的社会和生活,这看上去好像是个___________的话题,每个人都能说上几句。但事实上,有几个人能把这个问题说清楚,说细致,说出点儿新意,说出点儿可意会不可言传的___________?依次填入画横线部分最恰当的一项是()。
Supermarketshoppershaveneverbeenmorespoiltforchoice.Butjustwhenwethoughttraditionalsystemsofselectivefarmingh
Whatdoyouneedtodoinordertounderstandthelecture?NowtherearefourthingsthatI’mgoingtotalkabout.Thefirstthi
最新回复
(
0
)