首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):a1,a2,a3;(Ⅱ):a1,a2,a3;(Ⅲ):a1,a2,a3,a5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组a1,a2,a3,a5-a4的秩为4.
设向量组(Ⅰ):a1,a2,a3;(Ⅱ):a1,a2,a3;(Ⅲ):a1,a2,a3,a5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组a1,a2,a3,a5-a4的秩为4.
admin
2019-11-25
45
问题
设向量组(Ⅰ):a
1
,a
2
,a
3
;(Ⅱ):a
1
,a
2
,a
3
;(Ⅲ):a
1
,a
2
,a
3
,a
5
,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组a
1
,a
2
,a
3
,a
5
-a
4
的秩为4.
选项
答案
因为向量组(Ⅰ)的秩为3,所以a
1
,a
2
,a
3
线性无关,又因为向量组(Ⅱ)的秩也为3,所以向量a
4
可由向量组a
1
,a
2
,a
3
线性表示.因为向量组(Ⅲ)的秩为4,所以a
1
,a
2
,a
3
,a
5
线性无关,即向量a
5
不可由向量组a
1
,a
2
,a
3
线性表示,故向量a
5
-a
4
不可由a
1
,a
2
,a
3
线性表示,所以a
1
,a
2
,a
3
,a
5
-a
4
线性无关,于是向量组a
1
,a
2
,a
3
,a
5
-a
4
的秩为4.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/h9D4777K
0
考研数学三
相关试题推荐
设函数f(x)在[0,1]上连续,(0,1)内可导,且f(x)dx=f(0).证明:在(0,1)内存在一点c,使f’(c)=0.
已知α1=[1,一1,1]T,α2=[1,t,一1]T,α3=[t,1,2]T,β=[4,t2,一4]T,若β可由α1,α2,α3线性表示,且表示法不唯一,求t及β的表达式.
设A是m×n阶矩阵,试证明:(Ⅰ)如果A行满秩(r(A)=m),则对任何m×s矩阵C,矩阵方程AX=C都有解。(Ⅱ)如果A列满秩(r(A)=n),则存在n×m矩阵B,使得BA=E(E是n阶单位矩阵)。
设方程+(a+sin2x)y=0的全部解均以π为周期,则常数a=_________________________。
设离散型二维随机变量(X,Y)的取值为(xi,yj)(i,j=1,2)且,试求:(Ⅰ)二维随机变量(X,Y)的联合概率分布;(Ⅱ)X与Y的相关系数Pxy;(Ⅲ)条件概率P{Y=yj︱X=x1},j=1,2。
a为什么数时二次型x12+3x22+2x32+2ax2x3可用可逆线性变量替换化为2y12一3y22+5y32?
n元非齐次线性方程组AX=β如果有解,则解集合的秩为=n—r(A)+1.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
求极限=_______.
设f(u)具有连续的一阶导数,且当x>0,y>0时,z=满足求z的表达式.
随机试题
不属于商法与经济法主要区别的是:()
下列关于《谏逐客书》的说法,不准确的一项是()
Wehavearesponsibilitytoensureournation’scontinuedprosperityandthemostsensiblewaytodothisisbyinvestmentinba
母乳中因含有何种免疫球蛋白可阻止肠道内病原体等进入肠黏膜
下列因素与电源质量无关的是
牙齿敏感症的主要检查方法是()
神经细胞膜上钠泵活动受抑制时,可导致的变化是
患者,女性,21岁,眼部整形术后。患者上睑肿胀,局部有少量出血。为配合止血,护士可采取的措施是
根据《水电工程验收管理办法》(国能新能[2011]263号),水电工程阶段验收不包括()。
下列哪一种合同属于诺成合同?()
最新回复
(
0
)