首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
admin
2019-02-01
75
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:
①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);
②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则r(A)=r(B);
④若r(A)=r(B),则Ax=0与Bx=0同解。
以上命题中正确的有( )
选项
A、①②。
B、①③。
C、②④。
D、③④。
答案
B
解析
由于线性方程组Ax=0和Bx=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②,④显然不正确,利用排除法,可得正确选项为B。下面证明①,③正确:对于①,由Ax=0的解均是Bx=0的解可知,方程组Bx=0含于Ax=0之中。从而Ax=0的有效方程的个数(即r(A))必不少于Bx=0的有效方程的个数(即r(B)),故r(A)≥r(B)。对于③,由于A,B为同型矩阵,若Ax=0与Bx=0同解,则其相同,即n—r(A)=n—r(B),从而r(A)=r(B)。
转载请注明原文地址:https://www.kaotiyun.com/show/guj4777K
0
考研数学二
相关试题推荐
设A为10×10矩阵,计算行列式|A一λE|,其中E为10阶单位矩阵,λ为常数.
证明:函数f(x)在x0处可导的充要条件是存在一个关于△x的线性函数L(△x)=α△x,使=0.
给出如下5个命题:(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点;(2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)
特征根为r1=0,r2,3=±i的特征方程所对应的三阶常系数线性齐次微分方程为____________.
设A是s×n矩阵,B是A的前m行构成的m×b矩阵,已知A的行向量组的秩为r,证明:r(a)≥r+m一s.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,α2,…,αs,β中任意5个向量线性无关.
设向量组(I)α1,α2,…,αs线性无关,(II)β1,β2,…,βs线性无关,且αi(i=1,2,…,s)不能由(II)β1,β2,…,βs线性表出,βi(i=1,2,…,t)不能由(I)α1,α2,…,αs线性表出,则向量组α1,α2,…,αs,β1
随机试题
腹部反跳痛的发生机制是
区别三种有粒白细胞的主要依据是()。
可行性研究的核心内容为()。
就产业结构的演进总体来说,可分为()三个阶段。
根据《中华人民共和国个人所得税法》及其实施条例的规定,对个人将其所得通过中国境内非营利的社会团体、国家机关向教育、公益事业和遭受严重自然灾害地区、贫困地区的捐赠,捐赠额()。
我国纳税人依法享有纳税人权利,下列属于纳税人权利的有()。
人民警察是我国人民民主专政的重要工具之一,是武装性质的国家治安行政力量和刑事执法力量。()
Oracle系统不仅具有高性能的RDBMS,而且提供全过程的应用开发工具。如果要进行数据库建模,使用的是()。
为了使命令按钮在界面运行时显示"运行",需要设置该命令按钮的哪个属性
Windproducesfromtheunevenheatingoftheatmosphereandirregularitiesintheearth’ssurface.Theairmovementbetweenthes
最新回复
(
0
)