首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内二阶可导,且试证:存在一点ξ∈(a,b),使得f’’(ξ)=0.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,且试证:存在一点ξ∈(a,b),使得f’’(ξ)=0.
admin
2017-05-31
48
问题
设f(x)在[a,b]上连续,在(a,b)内二阶可导,且
试证:存在一点ξ∈(a,b),使得f’’(ξ)=0.
选项
答案
作辅助函数F(x)=∫
a
x
f(t)dt,则F(x)在[a,b]上连续,在(a,b)内可导.由拉格朗日定理可知,存在点η∈(a,b),使得 [*] 于是,在区间[a,η]和[η,b]上分别应用洛尔定理,可知存在点ξ
1
∈(a,η),ξ
2
∈(η,b),使得f(ξ
1
)一f(ξ
2
)=0.再对f’(x)在[ξ
1
,ξ
2
]上应用洛尔定理,可知存在点ξ∈(ξ
1
,ξ
2
)[*](a,b),使得f’’(ξ)=0.
解析
由洛尔定理可知:要证存在一点ξ∈(a,b),使得f’’(ξ)=0,只要证:
[ξ
1
,ξ
2
]
[a,b],使得f’(ξ
1
)=f’(ξ
2
)=0,只要证:
点η∈(a,b),使得f(z)=f(η)=f(b).
由条件
可知,对F(x)=∫
a
x
f(t)dt由拉格朗日定理便可找到这样的点η.
若按一般教材上的积分中值定理,只能证存在点η∈[a,b]使得
f(η),不能完成本题证明,实际上,积分中值定理可推广.
转载请注明原文地址:https://www.kaotiyun.com/show/giu4777K
0
考研数学一
相关试题推荐
设函数F(X)在[0,+∞]上连续,且f(0)>0,已知经在[0,x]上的平均值等于f(0)与f(x)的几何平均值,求f(x).
A、 B、 C、 D、 B
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时,向量组(I)与(Ⅱ)等价?
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在η∈(-1,1),使得f"(η)+f’(η)=1.
设f(x,y)与φ(x,y)均为可微函数,且(φy’,(x,y)≠0,已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是().
考虑一元二次方程x2+Bx+C=0,其中B,C分别是将一枚骰子接连掷两次先后出现的点数.求该方程有实根的概率p和有重根的概率q.
设z=f(u,v,x),u=φ(x,y),v=ψ(y),求复合函数z=f(φ(x,y),ψ(y),x)的偏导数
设f(x,y),φ(x,y)均有连续偏导数,点M0(x0,y0)是函数z=f(x,y)在条件φ(x,y)=0下的极值点,又φ’(x0,y0)≠0,求证:曲面z=f(x,y)与柱面φ(x,y)=0的交线F在点P0(z0,y0,z0)(z0=f(x0,y0
设y(x)是微分方程y’’+(x+1)y’+x2y=ex的满足y(0)=0,3,y’(0)=1的解,并设存在且不为零,则正整数k=________,该极限值=________.
随机试题
下列能够反映教师对自己的道德素养要求的是()
经络系统中能加强经脉之间在浅层相互联系的主要是
货币市场基金的长期收益率较低,并不合适进行长期投资。()
根据教学大纲的要求在校内外组织学生进行实际操作,将书本知识运用于实践的教学方法叫()
违反治安管理行为,在1年内被公安机关发现的,要依法予以追究;反之,在1年内没有被公安机关发现的,即使以后被发现也不再追究。()
任土作贡
根据维果斯基的观点,属于心理工具的是()。
在数据库中可用多种结构组织数据,散列文件是其中一种。关于散列文件,下列说法错误的是______。A)为了防止桶溢出,在散列文件设计时,需要预留一些空间大小不固定的桶B)用散列文件组织数据时,需要使用文件记录中的一个或多个域作为查找码C)如果散列
窗体中有文本框为Text1和Text2。运行程序时单击"运行"按钮Command1,在Text1中输入整数m(m>0),在Text2中显示输出m的全部除1和自身之外的因子。例如,20的因子有2,4,5,10,输出结果为"2,4,5,10,";16的因子为2
HowtoSurviveaLayoffYou’velostyourjob,butit’snottheendofyourcareer.Getthehelpyouneedtosetyoubackon
最新回复
(
0
)