首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设每次射击命中概率为0.3,连续进行4次射击,如果4次均未击中,则目标不会被摧毁;如果击中1次、2次,则目标被摧毁的概率分别为0.4与0.6;如果击中2次以上,则目标一定被摧毁。那么目标被摧毁的概率P= ________。
设每次射击命中概率为0.3,连续进行4次射击,如果4次均未击中,则目标不会被摧毁;如果击中1次、2次,则目标被摧毁的概率分别为0.4与0.6;如果击中2次以上,则目标一定被摧毁。那么目标被摧毁的概率P= ________。
admin
2018-12-29
61
问题
设每次射击命中概率为0.3,连续进行4次射击,如果4次均未击中,则目标不会被摧毁;如果击中1次、2次,则目标被摧毁的概率分别为0.4与0.6;如果击中2次以上,则目标一定被摧毁。那么目标被摧毁的概率P= ________。
选项
答案
0.4071
解析
设事件A
k
=“射击4次命中k次”,k=0,1,2,3,4,B=“目标被摧毁”,则根据4重伯努利试验概型公式,可知P(A
i
)=C
4
i
0.3
i
0.74
4—i
,i=0,1,2,3,4,则
P(A
0
)=0.7
4
=0.2401,P(A
1
)=0.4116,P(A
2
)=0.2646,
P(A
3
)=0.0756,P(A
4
)=0.0081。
由于A
0
,A
1
,A
2
,A
3
,A
4
是一完备事件组,且根据题意得
P(B|A
0
)=0,P(B|A
1
)=0.4,P(B|A
2
)=0.6,P(B|A
3
)=P(B|A
4
)=1。
应用全概率公式,有
P(B)=
P(A
i
)P(B|A
i
)=P(A
1
)P(B|A
1
)+P(A
2
)P(B|A
2
)+P(A
3
)+P(A
4
)=0.4071。
转载请注明原文地址:https://www.kaotiyun.com/show/gXM4777K
0
考研数学一
相关试题推荐
已知A,B为两事件,且BA,P(A)=0.3,=()
设(X,Y)的概率密度为f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,存在且不为0,则X与Y的概率密度fX(x),fY(y)分别为()
设f(x)在(-∞,+∞)连续,存在极限f(x)=B.证明:(I)设A<B,则对μ∈(A,B),ξ∈(-∞,+∞),使得f(ξ)=μ;(Ⅱ)f(x)在(-∞,+∞)上有界.
在一系列的独立试验中,每次试验成功的概率为p,记事件A=“第3次成功之前失败4次”,B=“第10次成功之前至多失败2次”,则P(A)=_______;P(B)=______.现进行n次重复试验,则在没有全部“失败”的条件下,“成功”不止一次的概率q=___
已知β1,β2是非齐次线性方程组AX=b的两个不同的解,α1,α2是其对应的齐次线性方程组的基础解系,k1,k2是任意常数,则方程组AX=b的通解必是()
设α1,α2,α3均为三维向量,则对任意常数K,L,向量组α1+kα3,α2+lα3线性无关是向量α1,α2,α3线性无关的()
设f’(x0)存在,则下列极限中等于f’(x0)的是()
设f(x)在[0,1]上连续,∫01f(x)dx=0,g(x)在[0,1]上有连续的导数,且在(0,1)内g’(x)≠0,∫01f(x)g(x)dx=0,试证:至少存在两个不同的点ξ1,ξ2∈(0,1),使得f(ξ1)=f(ξ2)=0.
设f(x)在x=a的某邻域内可导,且f(A)≠0,a≠0,求极限
已知曲线Y=f(x)在x=1处的切线方程为y=x一1,求极限
随机试题
真正体现预测之好坏与价值的尺度是
国际企业生产的产品要适应国际市场的需求,以下属于非强制性要求的是()
降低混悬剂微粒沉降速度的有效措施是
女,23岁。白带增多1周,有不洁性交史,妇科检查:小阴唇内侧见多个小菜花赘生物。为确诊应进行的辅助检查是()
25岁男性,60kg,双上肢全部、躯干前后面Ⅱ度烧伤,第一个24小时补液总量约为
从案例中分析得出,向科采用的短期内有效果的作法是()。解决困难途径的正确思路是()。
在旅游纠纷的解决中,申请仲裁后不能再向法院提起诉讼。
具体问题具体分析所依据的辩证法原理是()。
“什么是社会主义?怎样建设社会主义?”是邓小平在领导改革开放的现代化建设这一新的革命过程中,不断提出和反复思考的、首要的基本理论问题,搞清楚这一问题的关键是()。
全面实施《外商投资法》和相关配套法规、继续缩减外资准入负面清单、推进海南自由贸易港建设……近年来中国用实际行动不断扩大开放。中国扩大开放的举措,是根据中国改革发展客观需要作出的自主选择,这有利于()
最新回复
(
0
)