首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(a,b)内可微,且 f(a)=f(b)=0,f′(a)<0,f′(b)<0, 则方程f′(x)=0在(a,b)内( ).
设f(x)在(a,b)内可微,且 f(a)=f(b)=0,f′(a)<0,f′(b)<0, 则方程f′(x)=0在(a,b)内( ).
admin
2016-01-25
73
问题
设f(x)在(a,b)内可微,且
f(a)=f(b)=0,f′(a)<0,f′(b)<0,
则方程f′(x)=0在(a,b)内( ).
选项
A、没有实根
B、有且仅有一个实根
C、有且仅有两个不等实根
D、至少有两个不等实根
答案
D
解析
利用极限的保号性及f′(a)<0,f′(b)<0.先证明存在一点c∈(a,b),使f(c)=0.于是f(x)有三个零点,两次使用罗尔定理便得到结论(D)成立.
因
利用极限的保号性,在a的右邻域内必存在点x
1
,使f(x
1
)<0,其中a<x
1
<
.
同理由f′(b)<0知,必存在一点x
2
,使f(x
2
)>0,其中
<x
2
<b.由连续函数的零点定理知,必存在C∈(x
1
,x
2
)
(a,b),使f(c)=0.
在闭区间[a,c],[(c,b]上对f(x)分别使用罗尔定理可知,至少存在一点ξ
1
∈(a,C)使得f′(ξ
1
)=0,至少存在一点ξ
2
∈(c,b)使f′(ξ
2
)一0.故方程f′(x)=0在(a,b)内至少有两个不等实根,仅(D)入选.
转载请注明原文地址:https://www.kaotiyun.com/show/gOU4777K
0
考研数学三
相关试题推荐
习近平强调,要正确认识当前经济形势,深入调查研究,以更大的力度推进全面深化改革,积极破解发展面临的各种难题、化解来自各方面的风险挑战和巨大压力,为推进改革发展、战胜各种风险挑战凝聚广泛共识、汇聚强大力量。推进全面深化改革要
习近平总书记指出:“在整个发展过程中,都要注重民生、保障民生、改善民生,让改革发展成果更多更公平惠及广大人民群众,使人民群众在共建共享发展中有更多获得感。”我们之所以强调保障和改善民生,是因为
手工业社会主义改造是中国在建立了无产阶级专政的条件下,通过合作化道路,把个体手工业经济改造成为社会主义集体经济的过程。下列关于手工业社会主义改造的正确说法是
设函数f(x)=(x2-3x+2)sinx,则方程fˊ(x)=0在(0,π)内根的个数为()。
设f(x)在[a,b]上连续,且f(x)>0,x∈[a,b],证明:(1)Fˊ(x)≥2;(2)方程F(x)=0在区间(a,b)内有且仅有一个根.
验证下列函数满足波动方程utt=a2uxx:(1)u=sin(kx)sin(akt);(2)u=ln(x+at);(3)u=sin(x-at).
求下列欧拉方程的通解:(1)x2y〞+3xyˊ+y=0;(2)x2y〞-4xyˊ+6y=x;(3)y〞-yˊ/x+y/xx=2/x;(4)x3y〞ˊ+3x2y〞-2xyˊ+2y=0;(5)x2y〞+xyˊ-4y=x3;(6)x
随机试题
已知则f(x)
A.经蝶窦切除垂体微腺瘤B.一侧肾上腺全切+另侧肾上腺大部切除,术后作垂体放疗C.一侧肾上腺肿瘤摘除D.开颅手术+垂体放疗垂体手术未发现肿瘤而临床症状严重的Cushing病
周围血管疾病用测定双侧肢体皮肤温差的方法判断动脉血流减少情况,温度相差至少应大于()
根据《建设工程质量管理条例》,具有法定最低保修期限的有()。
下面是对社会公德的几种看法。观点一:社会公德维护公共利益,但会损害个人利益。观点二:社会公德很重要,但它与我没有多大关系。观点三:对熟悉的人,应该讲公德,对那些不认识的人没必要讲公德。观点四:社会公德可有可无,讲不讲公德无所谓。运用社会公德知识对
关于网孔电流法,下列叙述正确的有()。
下列名胜属于“东方四大奇观”的是()。
通知(文种)用于()。
(上海理工大学2006年试题)Inatelephonesurveyofmorethan2,000adults,21%saidtheybelievedthesunrevolved(旋转)aroundtheearth
HowtoSucceedinYourLiteratureClassCollegeliteratureclassmayseemdifficulttobeginners,especiallywiththeirlan
最新回复
(
0
)