首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线y=y(x)满足xdy+(x一2y)dx=0,且y=y(x)与直线x=1及x轴所围的平面图形绕x轴旋转一周所得旋转体的体积最小,则y(x)=( )
设曲线y=y(x)满足xdy+(x一2y)dx=0,且y=y(x)与直线x=1及x轴所围的平面图形绕x轴旋转一周所得旋转体的体积最小,则y(x)=( )
admin
2019-08-12
105
问题
设曲线y=y(x)满足xdy+(x一2y)dx=0,且y=y(x)与直线x=1及x轴所围的平面图形绕x轴旋转一周所得旋转体的体积最小,则y(x)=( )
选项
A、
B、
C、
D、
答案
C
解析
原方程可化为
其通解为
曲线y=x+Cx
2
与直线x=1及x轴所围区域绕x轴旋转一周所得旋转体的体积为
V(C)=π∫
0
1
(x+Cx
2
)
2
=
令V’(C)=
,得
。
故
是唯一的极值点,则为最小值点,所以
。故选C。[img][/img]
转载请注明原文地址:https://www.kaotiyun.com/show/gON4777K
0
考研数学二
相关试题推荐
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T.求方程组(Ⅰ)和(Ⅱ)的公共解.
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0)且f(a)=0,证明:存在ξ∈(a,b),使得f(ξ)=f′(ξ).
设f(x)在[0,1]上连续,且f(1)-f(0)=1.证明:
设曲线y=ax2(x≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线Y=ax2围成一平面图形D,求(I)D绕x轴旋转一周所成的旋转体的体积V(A);(II)a的值,使V(x)为最大。
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界,证明:f’(x)在(一∞,+∞)内有界.
已知3阶矩阵A的第一行是(a,b,c),a,b,C不全为零,矩阵(k为常数),且AB=0,求线性方程组Ax=0的通解.
α1,α2,α3,α4均是3维非零向量.则下列命题正确的是()
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是()
设则F(x)在x=0处()
设函数f(x)在(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是
随机试题
患者,女性,60岁,因肺炎住院治疗,因长期输液需要,预留置静脉套管针。对该患者的处理,下列不正确的是
地方病防治的根本策略是
不得在市场上销售的药品是
不得利用电视、广播、报纸、杂志等大众传媒进行广告宣传的药品包括()。
以下对于灌浆方式的错误表述是( )。
当日“债转股”的有效申报手数是当日“债转股”按账户合并后的申请手数与可转债交易过户后的持有手数比较,取较小的一个数量。( )
周某持炸药到甲家实施报复,民警接到报警后到达现场,发现周某正欲点燃炸药引爆,立即开枪。以下说法正确的是()。
碳汇造林正逐渐成为北方某市市民履行义务植树责任的形式之一。在经过几十年的营造和平原大造林后,该市适宜大规模造林的地方越来越少,由于路途遥远、交通问题、活动统筹困难等原因,组织大型植树活动也越来越困难,而人人都能参加的碳汇造林从根本上解决了这个问题。相关细则
生命中最主要的物质基础是()。
A.apparentlyB.part-writtenC.treatsD.workE.securedF.supplyG.fully-writtenH.successI.allegeJ.growthK.
最新回复
(
0
)