首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系 ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T. 求方程组(Ⅰ)和(Ⅱ)的公共解.
已知线性方程组(I)及线性方程组(Ⅱ)的基础解系 ξ1=[一3,7,2,0]T,ξ2=[一1,一2,0,1]T. 求方程组(Ⅰ)和(Ⅱ)的公共解.
admin
2018-11-11
83
问题
已知线性方程组(I)
及线性方程组(Ⅱ)的基础解系
ξ
1
=[一3,7,2,0]
T
,ξ
2
=[一1,一2,0,1]
T
.
求方程组(Ⅰ)和(Ⅱ)的公共解.
选项
答案
方程组(Ⅱ)的通解为 k
1
ξ
1
+k
2
ξ
2
=k
1
[一3,7,2,0]
T
+k
2
[一1,一2,0,1]
T
=[一3k
1
一k
2
,7k
1
-2k
2
,2k
1
,k
2
]
T
. 其中k
1
,k
2
是任意常数,将该通解代入方程组(I)得: 3(3k
1
-k
2
)一(7k
1
—2k
2
)+8(2k
1
)+k
2
=一16k
1
+16k
1
—3k
2
+3k
2
=0, (一3k
1
-k
2
)+3(7k
1
-2k
2
)一9(2k
1
)+7k
2
=一21k
1
+21k
1
—7k
2
+7k
2
=0, 即方程组(Ⅱ)的通解均满足方程组(Ⅰ),故(Ⅱ)的通解 k
1
[一3,7,2,0]
T
+k
2
[一1,一2,0,1]
T
. 即是方程组(I),(Ⅱ)的公共解.
解析
转载请注明原文地址:https://www.kaotiyun.com/show/ePj4777K
0
考研数学二
相关试题推荐
设函数f(x)=(1)证明f(x)是以π为周期的周期函数;(2)求f(x)在(一∞,+∞)内的最大值与最小值.
设x>0时,可微函数f(x)及其反函数g(x)满足关系式∫0f(x)g(t)dt=则f(x)=_______.
设当实数a为何值时,方程组Ax=β有无穷多组解,并求其通解.
设线性方程组与方程x1+2x2+x3=a—1(Ⅱ)有公共解,求a的值及所有公共解.
设向量组试问(1)a为何值时,向量组线性无关?(2)a为何值时,向量组线性相关,此时求齐次线性方程组x1α1+x2α2+x3α3+x4α4=0的通解.
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设A为n阶方阵,且满足A2=3A,E为n阶单位矩阵.证明4E一A可逆;
设在区间[0,2]上,|f(x)|≤1,|f”(x)|≤1.证明:对于任意的x∈[0,2],有|f’(x)|≤2.
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续.②f(x,y)在点(x0,y0)处两个偏导数连续.③f(x,y)在点(x0,y0)处可微.④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“”表示可由性质P推
设A,B为同阶方阵,举一个二阶方阵的例子说明(1)的逆命题不成立;
随机试题
Weareinterestedintheweatherbecauseit【21】ussodirectly—whatwewear,【22】wedo,andevenhowwefeel.Geographers,however
房间隔右心房面下部有一卵圆形浅窝称________,是房间隔缺损的好发部位。室间隔下部大部分较厚称________,上部小部分缺乏肌质称________,是室间隔缺损的好发部位。
牛肩关节的特点是
最多出现畸形中央尖的牙齿是A上4B下4C上5D下5E出现的几率相同
新中国成立之后的几年,我国的行政管理支出占财政支出的比重一度呈()趋势。
改正下列错别字郾旗息鼓(青岛大学2015)
在我国自治条例是指()。
在表单设计器中可使用多种工具栏,若要使用的工具栏没有出现,可选择【】菜单中的“工具栏”选项来显示相应的工具栏。
Agreatdealoftheknowledgewehaveabouthouseholdgoods【C1】______largelyfromtheadvertisementsweread.Advertisementsin
______isthecapitalofWales.
最新回复
(
0
)