首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2ex-f(x),且f(0)=0,g(0)=2,求∫0π[]dx。
设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2ex-f(x),且f(0)=0,g(0)=2,求∫0π[]dx。
admin
2019-08-01
68
问题
设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2e
x
-f(x),且f(0)=0,g(0)=2,求∫
0
π
[
]dx。
选项
答案
由f’(x)=g(x),g’(x)=2e
x
-f(x),得f"(x)=g’(x)=2e
x
-f(x),即 f"(x)+f(x)=2e
x
, 此为二阶常系数线性非齐次方程,且右端呈P
m
(x)e
λx
型(其中P
m
(x)=2,λ=1),对应的齐次方程为f"(x)+f(x)=0,特征方程为r
2
+1=0,对应的特征值为r=±i,于是齐次方程的通解为 y=C
1
cosx+C
2
sinx。 因为λ=1≠r,所以设特解为y
*
=ae
x
(a为实数),(y
*
)"=ae
x
,代入f"(x)+f(x)=2e
x
,ae
x
+ae
x
=2e
x
,所以a+a=2,即a=1,从而特解 y
*
=e
x
, 非齐次方程的通解为 f(x)=C
1
cosx+C
2
sinx+e
x
, 又f(0)=0,所以,f(0)=C
1
cos0+C
2
sin0+e
0
=0[*]C
1
+1=0[*]C
1
=-1, 又f’(x)=-C
1
sinx+C
2
cosx+e
x
,f’(0)=g(0)=2,所以, f’(0)=-C
1
sin0+C
2
cos0+e
0
=C
2
+1=2[*]C
2
=1, 所以原方程的解为 f(x)=sinx-cosx+e
x
。 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/gDN4777K
0
考研数学二
相关试题推荐
证明∫0ex2cosnxdx=0.
设有定义在(-∞,+∞)上的函数:以x=0为第二类间断点的函数是________.
设有定义在(-∞,+∞)上的函数:则(Ⅰ)其中在定义域上连续的函数是________.
设f(x)在(a,b)四次可导,x0∈(a,b)使得f’’(x0)=f’’’(x0)=0,又设f(4)(x)>0(x∈(a,b)),求证f(x)在(a,b)为凹函数.
求函数y=x+的单调区间、极值点及其图形的凹凸区间与拐点.
求下列函数的导数y’:(Ⅰ)y=arctanex2;(Ⅱ)y=
已知α1,α2,α3线性无关.α1+tα2,α2+2tα3,α3+4tα1线性相关.则实数t等于______.
若函数f(x)在x=1处的导数存在,则极限=_______.
已知(2,1,1,1)T,(2,1,a,a)T,(3,2,1,a)T,(4,3,2,1)T线性相关,并且a≠1,求a.
已知y1*=xex+e2x,y2*=xex+e-x,y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
随机试题
组织中基本的组织结构形态包括___________、___________。
Ⅱ期霍奇金病的病变分布为
细菌凝集试验或免疫荧光检测中所用的抗原是
在病房里,舒适的相对湿度是
项目决策管理层在项目实施阶段的决策管理内容包括()
关系数据库技术本身也在不断地发展和完善,它已取代了早期的层次数据库与网状数据库。关系数据库管理系统应能实现的专门关系运算包括()。
什么是情绪的维度与极性?研究情绪的维度与极性有什么意义?
某家饭店中,一桌人边用餐边谈生意。其中,一个人是哈尔滨人,两个人是北方人,一个人是广东人,两个人只做电脑生意,三个人只做服装生意。如果以上介绍涉及餐桌上所有的人.那么这一桌最少可能是几个人?最多可能是几个人?
在Java语言中,如实型常量后没有任何字母,计算机默认为______类型。
ReadthememoandtheCVofanapplicationbelow.Completethecandidateinformationthatfollows.Writeawordorphrase(inCA
最新回复
(
0
)