首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2ex-f(x),且f(0)=0,g(0)=2,求∫0π[]dx。
设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2ex-f(x),且f(0)=0,g(0)=2,求∫0π[]dx。
admin
2019-08-01
85
问题
设函数f(x),g(x)满足f’(x)=g(x),g’(x)=2e
x
-f(x),且f(0)=0,g(0)=2,求∫
0
π
[
]dx。
选项
答案
由f’(x)=g(x),g’(x)=2e
x
-f(x),得f"(x)=g’(x)=2e
x
-f(x),即 f"(x)+f(x)=2e
x
, 此为二阶常系数线性非齐次方程,且右端呈P
m
(x)e
λx
型(其中P
m
(x)=2,λ=1),对应的齐次方程为f"(x)+f(x)=0,特征方程为r
2
+1=0,对应的特征值为r=±i,于是齐次方程的通解为 y=C
1
cosx+C
2
sinx。 因为λ=1≠r,所以设特解为y
*
=ae
x
(a为实数),(y
*
)"=ae
x
,代入f"(x)+f(x)=2e
x
,ae
x
+ae
x
=2e
x
,所以a+a=2,即a=1,从而特解 y
*
=e
x
, 非齐次方程的通解为 f(x)=C
1
cosx+C
2
sinx+e
x
, 又f(0)=0,所以,f(0)=C
1
cos0+C
2
sin0+e
0
=0[*]C
1
+1=0[*]C
1
=-1, 又f’(x)=-C
1
sinx+C
2
cosx+e
x
,f’(0)=g(0)=2,所以, f’(0)=-C
1
sin0+C
2
cos0+e
0
=C
2
+1=2[*]C
2
=1, 所以原方程的解为 f(x)=sinx-cosx+e
x
。 [*]
解析
转载请注明原文地址:https://www.kaotiyun.com/show/gDN4777K
0
考研数学二
相关试题推荐
设f(x)在[0,+∞)连续,f(x)=A≠0,证明:∫01f(x)dx=A.
讨论下列函数的连续性并判断间断点的类型:
设f(x)在(a,b)四次可导,x0∈(a,b)使得f’’(x0)=f’’’(x0)=0,又设f(4)(x)>0(x∈(a,b)),求证f(x)在(a,b)为凹函数.
求下列函数的导数y’:(Ⅰ)y=arctanex2;(Ⅱ)y=
求解二阶微分方程的初值问题
已知(2,1,1,1)T,(2,1,a,a)T,(3,2,1,a)T,(4,3,2,1)T线性相关,并且a≠1,求a.
求常数a,使得向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但是β1,β2,β3不可用α1,α2,α3线性表示.
随机试题
犬、猫是华支睾吸虫的猪是姜片吸虫的
小柴胡汤中柴胡与黄芩配伍比例是
判定患者有无共济失调,可通过以下哪种试验
小轿车上供人使用的空调器,成套散件形式报验
股票价值最大化的目标会与诸如避免不道德或违法行为等其他目标发生冲突吗?特别是,你是否认为像客户和职工的安全、环境和良好的社会等主题符合这一框架,或者它们本来就被忽视了?试着用一些具体情况来说明你的答案。
李白诗句“蓬莱文章建安骨,中间小谢又清发”中小谢是指_____。
Duringthelast15years,theEarth’ssurfacetemperatureroseatarateof0.04°Cadecade,farslowerthanthe0.18℃increase
下列叙述中正确的是()。
Culturereferstothesocialheritageofapeople--thelearnedpatternforthinking,feelingandactingthatcharacterizeapopu
Womendriversaremorelikelytobeinvolvedinanaccident,accordingtoscientists.Researchers(1)______6.5millioncarc
最新回复
(
0
)