首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n维向量a=(a,0,…,0,a)T,a<0;E为n阶单位矩阵,矩阵A=E一aaT,B=E+,其中A的逆矩阵为B,则a= _______
设n维向量a=(a,0,…,0,a)T,a<0;E为n阶单位矩阵,矩阵A=E一aaT,B=E+,其中A的逆矩阵为B,则a= _______
admin
2019-03-12
121
问题
设n维向量a=(a,0,…,0,a)
T
,a<0;E为n阶单位矩阵,矩阵A=E一aa
T
,B=E+
,其中A的逆矩阵为B,则a= _______
选项
答案
一1.
解析
由A
-1
=B,得
又易验证矩阵αα
T
≠O,故得
但α
T
α=∥a∥
2
=2α
2
,代入上式,得
=>α=一1,或
(舍去),故α=一1.
本题主要考查逆矩阵的概念及矩阵乘法运算规律.注意αα
T
是一个n阶方阵,而α
T
α却是一个数.
转载请注明原文地址:https://www.kaotiyun.com/show/g0P4777K
0
考研数学三
相关试题推荐
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)0,则至少存在一点ξ∈[a,b]使得∫abF(x)G(x)dx=F(ξ)∫abG(x)dx.
历史上科学家皮尔逊进行抛掷一枚匀称硬币的试验,他当时掷了12000次,正面出现6019次,现在我们若重复他的试验,试求:(Ⅰ)抛掷12000次正面出现频率与概率之差的绝对值不超过当年皮尔逊试验偏差的概率;(Ⅱ)要想使我们试验正面出现的频率与概率之差的绝
一学徒工用同一台机床连续独立生产3个同种机器零件,且第i个零件是不合格品的概率pi=(i=1,2,3).则三个零件中合格品零件的期望值为________.
设某厂生产甲、乙两种产品,当这两种产品的产量分别为x和y(单位:吨)时总收益函数为R(x,y)=27x+42y-x2-2xy-4y2,总成本函数为C(x,y)=36+12x+8y(单位:万元)。除此之外,生产甲种产品每吨还需支付排污费1万元,生产乙种产品每
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中(Ⅱ)利用(Ⅰ)的结果判断矩阵B一CTA—1C是否为正定矩阵,并证明结论。
设区域D={(x,y|x2+y2≤1,x≥0},计算二重积分
设总体X的概率密度为其中参数θ(0<θ<1)未知。X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值。求参数θ的矩估计量。
袋中有a个白球与b个黑球。每次从袋中任取一个球,取出的球不再放回去,求第二次取出的球与第一次取出的球颜色相同的概率。
设函数f(x,y,z)一阶连续可偏导且满足f(tx,ty,tz)=tkf(x,y,z).证明:
设φ1(x),φ2(x)为一阶非齐次线性微分方程y′+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
随机试题
[*]
A.成角移位B.分离移位C.短缩移位D.侧方移位E.旋转移位
甲与乙订立合同,乙以甲有欺诈行为为由向人民法院提出撤销合同申请,人民法院依法撤销了该合同。下列有关被撤销合同的法律效力的表述中,正确的是()
导游员在处理人际关系、特别是涉外关系中应该遵循的基本准则是()。
装卸搬运在生产和流通领域中的共性特点有()。
研究表明,要获得最佳记忆效果,学习的熟练程度需达到()
设y=x2lnx,求y(n)(n≥3).
设y=y(x)由exy=x2+y2+1确定,则=________.
某轴承厂有甲、乙、丙三个车间,各车间生产的轴承数量分别占全厂的40%、30%、 30%,各车间的次品率分别为3%、4%、5%(正品率分别为97%、96%、95%)。以上叙述如下图所示。在图中,从“厂”结点出发选择三个车间产品的概率分别为0.4、0.3、
BythetimeIfinishedhighschool,myinterestinanimalshadgrown,andenrolledatauniversitytostudybiology.Ilearneds
最新回复
(
0
)