首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3. 用正交变换把二次型f化为标准形,并求出相应的正交矩阵.
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3. 用正交变换把二次型f化为标准形,并求出相应的正交矩阵.
admin
2016-01-11
34
问题
已知二次型f(x
1
,x
2
,x
3
)=4x
2
2
-3x
3
2
+4x
1
x
2
-4x
1
x
3
+8x
2
x
3
.
用正交变换把二次型f化为标准形,并求出相应的正交矩阵.
选项
答案
矩阵A的特征多项式为[*] 由此得矩阵A的特征值为λ
1
=1,λ
2
=6,λ
3
=一6.于是,二次型f可通过正交变换x=Oy化为标准形f=y
1
2
+6y
2
2
—6y
3
2
. 对于特征值λ
1
=1,由于[*] 故对应于特征值λ
1
=1的特征向量可取为ξ
1
=(2,0,一1)
T
. 类似地,对应于特征值λ
1
=6,λ
2
=-6的特征向量可分别取为 ξ
2
=(1,5,2)
T
,ξ
3
=(1,一1,2)
T
. 因为A是实对称矩阵,且λ
1
,λ
2
,λ
3
互异,故x
1
,x
2
,x
3
构成正交向量组,将其单位化得[*] 故对二次型f作正交变换[*] 则可将f化为标准形f=y
1
2
+6y
2
2
一6y
3
2
.
解析
本题主要考查用正交变换化二次型为标准形的方法,矩阵特征值、特征向量的求法.先求出二次型f的矩阵A及A的特征值与特征向量,再将特征向量正交单位化,求出正交矩阵,即可把f化为标准形.
转载请注明原文地址:https://www.kaotiyun.com/show/fv34777K
0
考研数学二
相关试题推荐
A=求a,b及可逆矩阵P,使得P-1AP=B.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,……,Aαn-1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设A为三阶实对称矩阵,α1=(a,-a,1)T是方程组AX=0的解,α2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=________.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设函数f(x)在区间[0,4]上连续,且=0,求证:存在ξε(0,4)使得f(ξ)+f(4-ξ)=0。
已知抛物线y=px2+qx(其中p<0,q>0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S.(Ⅰ)问p和q何值时,S达到最大值?(Ⅱ)求出此最大值.
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).求正交矩阵Q,使得Q-1AQ=A.
设当x→0时,是等价的无穷小,则常数a=__________.
随机试题
下列各句中,没有语病的一句是
女性,56岁,上腹不适,嗳气一个月,进食如常,胃镜示:胃角小弯侧1cm×0.6cm局限性黏膜粗糙、糜烂,亚甲蓝喷洒后着色明显。下列治疗首选
某建筑物人口为防雷跨步电压,下述哪一项做法不符合规范规定?()
某双代号网络图有A、B、C、D、E五项工作,A、B完成后D才能开始,B、C完成后E开始,下列图形中逻辑关系正确的是()。
客运企业等级是指对客运企业()、资产规模、车辆条件、经营业绩、安全状况和服务质量等方面的综合评价。
()。
求曲线y=3-|χ2-1|与χ轴围成的封闭图形绕y=3旋转所得的旋转体的体积.
=__________(其中口为常数).
在请求页式管理中,当硬件变换机构发现所需的页不在内存时,产生【】中断信号,中断处理程序作相应的处理。
应用入侵防护系统(AIPS)一般部署在()。
最新回复
(
0
)