首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有( ).
设A为n阶实矩阵,AT为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)ATAx=0必有( ).
admin
2012-03-22
76
问题
设A为n阶实矩阵,A
T
为A的转置矩阵,则对于线性方程组(I)AX=0和(Ⅱ)A
T
Ax=0必有( ).
选项
A、(Ⅱ)的解是(I)的解,(I)的解也是(Ⅱ)的解
B、(I)的解是(Ⅱ)的解,但(Ⅱ)的解不是(I)的解
C、(I)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(I)的解
D、(Ⅱ)的解是(I)的解,但(I)的解不是(Ⅱ)的解
答案
A
解析
转载请注明原文地址:https://www.kaotiyun.com/show/fNF4777K
0
考研数学三
相关试题推荐
三三制政权是共产党领导的抗日民族统一战线性质的政权,是一切赞成抗日又赞成民主的人们的政权,是几个革命阶级联合起来对于汉奸和反动派的民主专政。三三制是指抗日民主政府在工作人员分配上实行“三三制”原则,即共产党员、非党的左派进步分子和不左不右的中间派各占1/3
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论α1能否由α2,α3,…,αm-1线性表示?
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设β,α1,α2线性相关,β,α2,α3线性无关,则().
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设α1,α2,…,αr(r≤n)是互不相同的数,αi=(1,αi,αi2,…,αin-1)(i=1,2,…,r),问α1,α2,…,αr是否线性相关?
随机试题
行政法律责任中的行政处罚的形式有()
下列关于劳动保障监察程序方面的表述,正确的有()
放疗摆位中填充物的允许精度为
A、硫酸铁铵B、结晶紫C、淀粉D、二甲酚橙E、酚酞;下列测定中所选择的指示剂为用EDTA滴定液测定氢氧化铝
投资控制的基本方法有分阶段控制法和()。
根据支付结算法律制度的规定,下列事项中,属于汇票任意记载事项的是()。(2016年)
一般资料:求助者,女性,42岁,自由职业者。案例介绍:求助者家庭条件优越,自己在家照看两个女儿。求助者少年时期学过钢琴,曾经梦想要成为钢琴家,后因故中断。大女儿4岁的时候,就被她安排学琴,后来考入音乐学院,求助者很欣慰。她也想让小女儿学琴,可小女
克服对于()相当于()对于瓶颈
(2013年第31题)一位社会学家发现大楼的一块玻璃坏了,起初他没太当回事,没过多久,他发现许多处窗户都破损了。经过调研后,他得出结论:一样东西如果有一点破损,人们就会有意无意地加快它的破损速度;一样东西如果完好无损,或是及时维护,人们就会精心地护理。这就
Airpollutionkilledaboutsevenmillionpeoplelastyear,makingittheworld’ssinglebiggestenvironmentalhealthrisk,theW
最新回复
(
0
)