首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A、B为3阶相似非零实矩阵,矩阵A=(αij)满足aij=Aij(i,j=1,2,3),Aij是aij的代数余子式,矩阵B满足|E+2B|=|E+3B|=0,则矩阵A*+E可逆,方程组(B-E)x=0没有非零解.
设A、B为3阶相似非零实矩阵,矩阵A=(αij)满足aij=Aij(i,j=1,2,3),Aij是aij的代数余子式,矩阵B满足|E+2B|=|E+3B|=0,则矩阵A*+E可逆,方程组(B-E)x=0没有非零解.
admin
2020-04-30
20
问题
设A、B为3阶相似非零实矩阵,矩阵A=(α
ij
)满足a
ij
=A
ij
(i,j=1,2,3),A
ij
是a
ij
的代数余子式,矩阵B满足|E+2B|=|E+3B|=0,则矩阵A
*
+E可逆,方程组(B-E)x=0没有非零解.
选项
答案
由a
ij
=A
ij
(i,j=1,2,3)可知,A
*
=A
T
.于是 [*] 又因为A≠0,不妨假设a
11
≠0,所以 [*] 又由已知,A~B,所以A与B有相同的特征值,且|B|=|A|=1. 由|E+2B|=|E+3B|=0,可得B有特征值λ
1
=-1/2,λ
2
=-1/3. 设B的另一特征值为λ
3
,则有[*].所以A、B的特征值为λ
1
=-1/2,λ
2
=-1/3,λ
3
=6.于是矩阵A
*
+E=A
T
+E=A+E的特征值为λ
1
+1=1/2,λ
2
+1=2/3,λ
3
+1=7全不为0,故A
*
+E可逆. 显然B-E的特征值为λ
1
-1=-3/2,λ
2
-1=-4/3,λ
3
-1=5.所以B-E可逆,故方程组(B-E)x=0没有非零解.
解析
本题主要考查如何求抽象矩阵的特征值.再利用特征值的性质证其结论.
转载请注明原文地址:https://www.kaotiyun.com/show/fIv4777K
0
考研数学一
相关试题推荐
[2011年]设A=[α1,α2,α3,α4]是四阶矩阵,A*为A的伴随矩阵,若[1,0,1,0]T是方程组AX=0的一个基础解系,则A*X=0的基础解系可为().
α1,α2,α3,β1,β2均为四维列向量,A=(α1,α2,α3,β1),B=(α3,α1,α2,β2),且|A|=1,|B|=2,则|A+B|=()
在下列微分方程中,以y=c1ex+c2cos2x+C3sin2x(c1,c2,c3为任意常数)为通解的是().
已知方程组的通解是(1,2,一1,0)T+k(一1,2,一1,1)T,则a=______.
方程组x1+x2+x3+x4+x5=0的基础解系是______
设α,β为三维非零列向量,(α,β)=3,A=αβT,则A的特征值为_________.
设三阶矩阵A的特征值为λ1=一1,λ2=一,其对应的特征向量为α1,α2,α3,令P=(2α3,一3α1,一α2),则P-1(A-1+2E)P=___________.
二阶常系数非齐次线性微分方程y"-4y’+3y=2e2x的通解为y=__________.
设A为n阶方阵,任何n维列向量都是方程组的解向量,则R(A)=_________。
随机试题
企业营销宏观环境中的政治因素有()
下列B受体阻断药中哪个兼有α受体阻断作用
货币供给是()的经济手段。
甲公司2013年至2015年与投资业务相关的资料如下。(1)2013年5月20日,甲公司与乙公司的原股东A公司签订股权转让合同。合同约定:甲公司向A公司购买其所持有的乙公司80%的股权;以乙公司2013年5月31日经评估确认的净资产价值为基础确定股权转让
十八届三中全会指出,公有制为主体、多种所有制经济共同发展的基本经济制度,是中国特色社会主义制度的重要支柱,也是社会主义市场经济体制的根基。公有制经济和非公有制经济都是社会主义市场经济的重要组成部分,都是我国经济社会发展的重要基础。必须毫不动摇巩固和发展公有
A、 B、 C、 D、 D(2+3+3+0)÷2=4,(3+5+2+14)÷2=12,(2+4+4+6)÷2=8。
2011年第三季度,江苏城镇居民人均可支配收入的月平均数是()。
数学教师在教应用题时,一再强调要学生看清题目,必要时可以画一些示意图,这样做的目的是为了()
根据我国民法的规定,下列不适用不当得利的是()。
假设某种型号的螺丝钉的重量是随机变量,期望值为50克,标准差为5克.求:(Ⅰ)100个螺丝钉一袋的重量超过5.1千克的概率;(Ⅱ)每箱螺丝钉装有500袋,500袋中最多有4%的重量超过5.1千克的概率.
最新回复
(
0
)