首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
职业资格
案例:阅读下列三位教师有关“正弦定理”的教学片段。 教师甲的教学过程: 创设情境: 问题1:在建设水口电站闽江桥时,需预先测量桥长AB,于是在江边选取一个测量点C,测得CB=435m,∠CBA=88°,∠BCA=42°。由
案例:阅读下列三位教师有关“正弦定理”的教学片段。 教师甲的教学过程: 创设情境: 问题1:在建设水口电站闽江桥时,需预先测量桥长AB,于是在江边选取一个测量点C,测得CB=435m,∠CBA=88°,∠BCA=42°。由
admin
2015-08-13
90
问题
案例:阅读下列三位教师有关“正弦定理”的教学片段。
教师甲的教学过程:
创设情境:
问题1:在建设水口电站闽江桥时,需预先测量桥长AB,于是在江边选取一个测量点C,测得CB=435m,∠CBA=88°,∠BCA=42°。由以上数据,能测算出桥长AB吗?这是一个什么数学问题?
引出:解三角形——已知三角形的某些边和角,求其他的边和角的过程。
(设计意图:从实际问题出发,引入数学课题。)
师:解三角形,需要用到许多三角形的知识,你对三角形中的边角知识知多少?
生:……,“大角对大边,大边对大角”。
师:“a>b>c←→A>B>C”,这是定性地研究三角形中的边角关系,我们能否更深刻地、从定量的角度研究三角形中的边角关系?
引出课题:“正弦定理”。
教师乙的教学过程:
师:请同学们想一想,我们以前遇到解三角形的一般问题时,是怎样处理的?
众学生:先从特殊事例入手,寻求答案或发现解法。可以以直角三角形为特例,先在直角三角形中试探一下。
师:如果一般三角形具有某种边角关系,那么对于特殊的三角形——直角三角形也是成立的,因此我们先研究特例,请同学们对直角三角形进行研究,寻找一般三角形的各边及其对角之间的关系。同学们可以参与小组共同研究。
(1)学生以小组为单位进行研究;教师观察学生的研究进展情况或参与学生的研究。
(2)展示学生研究的结果。
师:请说出你研究的结论?
生:
师:你是怎样想出来的?
生:因为在直角三角形中,它们的比值都等于斜边c。
师:有没有其他的研究结论?(根据实际情况,引导学生分析判断结论正确与否,或留课后进一步深入研究。)
师:
对一般三角形是否成立呢?
众学生:不一定,可以先用具体例子检验,若有一个不成立,则否定结论;若都成立,则说明这个结论很可能成立,再想办法进行严格的证明。
师:这是个好主意。那么
对等边三角形是否成立呢?
生:成立。
师:对任意三角形
是否成立呢?现在让我们借助于《几何画板》做一个数学实验,……
师:借助于电脑与多媒体,利用《几何画板》软件,演示正弦定理教学课件。边演示边引导学生观察三角形形状的变化与三个比值的变化情况。
结论:
对于任意三角形都成立。
教师丙的教学过程:
师:对任意的三角形,如何用数学的思想方法证明
呢?之前的探索对我们有没有帮助?学生分组讨论,每组派一个代表总结。(以下的证明过程,根据学生回答情况进行叙述)
生:思考得出
①在Rt△ABC中成立,如前面检验。
②在锐角三角形中,如图1设BC=a,CA=b,AB=c
作:AD⊥BC,垂足为D
在Rt△ABD中,
∴AD=AB·sinB=c·sinB
在Rt△ADC中,
∴AD=AC·sinC=b·sinC
∴csinB=bsinC
∴
同理,在△ABC中,
∴
③在钝角三角形中,如图2设∠C为钝角,BC=a,CA=b,AB=c
作AD⊥BC交BC的延长线于D
在Rt△ABD中,
∴AD=AB·sinB=c·sinB
在RT△ADC中,
∴AD=AC·sin∠ACD=b·sin∠ACB
∴c·sinB=b·sin∠ACB
∴
同锐角三角形证明可知
师:我们把这条性质称为正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
问题:
(1)分析三种教学过程的特点。
(2)说明正弦定理的教学过程中应该注意的问题。
选项
答案
(1)教师甲:从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。 教师乙:教师参与学生之间的研究,增进师生之间的思维与情感的交流,并通过教师的指导与观察,及时掌握学生研究的情况,为展示学生的研究结论作准备;同时通过展示研究结论,强化学生学习的动机,增进学生的成功感及学习的信心。引导学生的思维逐步形成“情境思考”一“提出问题”一“研究特例”一“归纳猜想”一“实验探究”一“理论探究”一“解决问题”的思维方式,进而形成解决问题的能力。 教师丙:经历证明猜想的过程,进一步引导启发学生利用已有的数学知识论证猜想,力图让学生体验数学的学习过程。 (2)“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。解三角形作为几何度量问题,应突出几何的作用和数量化的思想,为学生进一步学习数学奠定基础。“正弦定理”作为单元的起始课,为后续内容作知识与方法的准备,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),解决简单的三角形度量问题。教学过程中,应发挥学生的主动性,通过探索发现、合情推理与演绎证明的过程,提高学生的思辨能力。
解析
转载请注明原文地址:https://www.kaotiyun.com/show/f9tv777K
本试题收录于:
数学学科知识与教学能力题库教师资格分类
0
数学学科知识与教学能力
教师资格
相关试题推荐
个体在不同的年龄段表现出的身心发展不同的总体特征及主要矛盾,面临着不同的发展任务,这就是身心发展的()。
以下材料是某教师在讲授《拥抱美好未来》一课时所确立的三维目标。知识目标:了解21世纪对人才的更新更高要求。学生认识到创新精神是一个国家和民族发展的不竭动力,也是当代人应该具备的素质。感受到社会发展需要个人智慧.更需要发挥团队的力量。意识到终身学习
某教师在《发现我的生命》教学中,以“独特的我”为话题,让学生即兴演讲,引导学生认识到在外貌、性格、兴趣等方面,人与人是不同的,世界上没有两个完全相同的人。该教师运用的教学方法是()。
传统教学具有注重预设,忽视课堂生成的倾向。新课程教学主张在预设的前提下,关注生成,引导生成,强调教学是预设与生成的有机统一。然而,受传统教学观的影响,在实践中我们发现,仍有不少教师,或忽视生成,或回避生成,或压制生成,从而把生成扼杀在了萌芽状态,或是让生成
甲、乙双方连续几年订有买卖“交流电机”的合同。有一次签订合同时,在“标的物”一栏只写了“电机”两字。当时正值交流电机热销,而甲方供不应求,故甲方就以直流电机交货。就民法的基本原则而言,甲方违反了()。
根据以下内容,我们可以得出的正确结论有()。①我国已成为具有全球影响的负责任的地区性大国②当今世界,霸权主义和强权政治依然存在③我国奉行独立自主的和平外交政策④我国在国际事务中发挥着日益重要的作用
材料:国家法律法规对行政裁量权规定了一定的范围和幅度。但有的缺乏具体的实施细则和执法基准,这为行政机关滥用行政裁量权提供了可能。比如,道路交通法第99条规定,机动车行驶超速的罚款从200元到2000元,执法人员应根据案件实际情况合理作出处罚。而在实践中,出
《义务教育数学课程标准(2011年版)》对“一元二次方程”的一条要求为:理解配方法,能用配方法、公式法、因式分解法解数学系数的一元二次方程.针对上述要求,完成下列任务.结合实际(如运动、测量等)设计一道一元二次方程的应用题并给出解答.
函数的图象与x轴交点的个数是()。
已知命题p:x1,x2∈R,(f(x2)-f(x1))(x2x1)≥0,则﹁p是()。
随机试题
要求交纳对进口产品无限制作用的保证金的进口许可程序,属于()
你不能想象社交聚会结束后房间里有多么脏乱。(mess)
“知识就是力量”这句名言是出自
患者男性,33岁,2周前开始出现牙痛,牙龈肿胀,20小时前突然出现左颈部肿胀、剧痛,伴高热。查体:左颈部肿胀,张力大,压痛,无结节。诊断首先考虑是
双眼闭合障碍,见于
根据合同法律制度的规定,在受赠人()的情况下,赠与人可以撤销赠与。
材料一:阅读下面的短文,完成61—65题。一切传统都是过去的东西,但并非一切过去的东西都是传统。可是,过去确系传统的一个重要特征,我们不能离开过去与现在的关系而谈传统。传统都有其“原本”,原本是传统的始发言行。传统的始发言行有其特定的原初行
WelearnfromthefirstparagraphthatlaughterDoctorshavefoundthatlaughter
BothAlice’sparentsareveryinterestedintheirdaughter’sattempt______thechannel.
VinceisLearningChineseinmyclass.______Andy.
最新回复
(
0
)