首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是(一∞,+∞)上连续的偶函数,且|f(x)|≤M,当x∈(一∞,+∞)时成立,则F(x)=f(t)dt是(一∞,+∞)上的( )
设f(x)是(一∞,+∞)上连续的偶函数,且|f(x)|≤M,当x∈(一∞,+∞)时成立,则F(x)=f(t)dt是(一∞,+∞)上的( )
admin
2019-06-29
68
问题
设f(x)是(一∞,+∞)上连续的偶函数,且|f(x)|≤M,当x∈(一∞,+∞)时成立,则F(x)=
f(t)dt是(一∞,+∞)上的( )
选项
A、有界偶函数。
B、无界偶函数。
C、有界奇函数。
D、无界奇函数。
答案
A
解析
首先,讨论F(x)的奇偶性,对任意的x有
F(一x)=
=F(x),
可见,F(x)是(一∞,+∞)上的偶函数。
其次,讨论F(x)的有界性,因F(x)是(一∞,+∞)的偶函数,可限于讨论x≥0时F(x)的有界性,由于
故F(x)也是(一∞,+∞)上有界的函数。故应选A。
转载请注明原文地址:https://www.kaotiyun.com/show/f7V4777K
0
考研数学二
相关试题推荐
设A为3阶方阵,|A|=2,A*为A的伴随矩阵.若交换A的第1行和与第2行得矩阵B,则|BA*|=_______.
设f(χ)在[0,+∞)上非负连续,且f(χ)∫0χf(χ-t)dt=2χ3,则f(χ)=_______.
设向量组线性无关,则a,b,c必满足关系式_______.
设f(x)为连续函数,且满足f(xt)dt=f(x)+xsinx,则f(x)=_______
下列函数中,在x=0处不可导的是()
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求正交矩阵Q和对角矩阵,使得QTAQ=。
设A,B均为二阶矩阵,A*,B*分别为A,B的伴随矩阵。若|A|=2,|B|=3,则分块矩阵的伴随矩阵为()
设。当实数a为何值时,方程组Ax=β有无穷多解,并求其通解。
如图,曲线C的方程为y=f(x),点(3,2)是它的一个极点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4)。设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f"’(x)dx。
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件;
随机试题
下列选项中,标志着艺术活动的开端的是()
男,36岁,1周前出现化脓性扁桃体炎,近1天,突然出现左下颌下肿物、剧痛,伴高热,查体:体温39℃,左下颌下肿物,直径2cm,红肿、压痛,红肿中央区可及波动感。考虑诊断是
提示血容量不足可能有心功能不全存在
可以近似看作无风险证券的是(),其收益率可被用作确定基础利率的参照物。
Thesedays,manylargecitybuildingsareequippedwiththeirownair-conditioningsystems.Thesesystemshelpkeepthebuilding
《学记》中“学不躐等”所体现的教育原则是()原则。
教学方法的选择受教育目的、学科性质、学科内容和学生认识水平的影响。()
一个人只有努力奋斗拼搏,才能获得事业的成功;只有获得事业的成功,才能获得人生的幸福。但是,如果努力奋斗拼搏,就要勇于承受痛苦与艰难。遗憾的是,世上有些人十分畏惧痛苦与艰难,并不愿意承受它们。根据以上信息,可以推出以下哪项?
去年4月,股市出现了强劲反弹,某证券部通过对该部股民持仓品种的调查发现,大多数经验丰富的股民都买了小盘绩优股,而所有年轻的股民都选择了大盘蓝筹股,而所有买了小盘绩优股的股民都没买大盘蓝筹股。如果上述情况为真,则以下哪项关于该证券部股民的调查结果也
若服务器系统可用性达到99.99%,那么每年的停机时间必须小于等于()。
最新回复
(
0
)