首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有向量组(Ⅰ):α1=(1,1,1,3)T,α2一(一1,一3,5,1)T,α3=(3,2,一1,t+2)T,α4=(一2,一6,10,t)T. (1)t为何值时,(Ⅰ)线性无关?并在此时将向量α=(4,1,6,10)T用(1)线性表出;
设有向量组(Ⅰ):α1=(1,1,1,3)T,α2一(一1,一3,5,1)T,α3=(3,2,一1,t+2)T,α4=(一2,一6,10,t)T. (1)t为何值时,(Ⅰ)线性无关?并在此时将向量α=(4,1,6,10)T用(1)线性表出;
admin
2018-07-31
48
问题
设有向量组(Ⅰ):α
1
=(1,1,1,3)
T
,α
2
一(一1,一3,5,1)
T
,α
3
=(3,2,一1,t+2)
T
,α
4
=(一2,一6,10,t)
T
.
(1)t为何值时,(Ⅰ)线性无关?并在此时将向量α=(4,1,6,10)
T
用(1)线性表出;
(2)t为何值时,(Ⅰ)线性相关?并在此时求(Ⅰ)的秩及一个极大无关组.
选项
答案
对下列矩阵作初等行变换: [α
1
,α
2
,α
3
,α
4
|α]=[*] [*] (1)由阶梯形矩阵可见,当t≠2时,α
1
,α
2
,α
3
,α
4
线性无关,此时,再对上面的阶梯形矩阵施行初等行变换,化为 [*] (2)当t=2时,α
1
,α
2
,α
3
,α
4
线性相关,其极大无关组可取为α
1
,α
2
,α
3
(或α
1
,α
3
,α
4
,).
解析
转载请注明原文地址:https://www.kaotiyun.com/show/f5g4777K
0
考研数学一
相关试题推荐
[*]
设f(x)在[a,b]上连续可导,且f(a)=f(b)=0.证明:|f(x)|≤∫ab|f’(x)|dx(a<x<b).
设齐次线性方程组为正定矩阵,求a,并求当|X|I=时XTAX的最大值.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明α,Aα线性无关;(2)若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
设随机变量X~U[一1,1],则随机变量U=arcsinX,V=arccosX的相关系数为().
设A=相似于对角阵.求:(1)a及可逆阵P,使得P-1AP=为对角阵;(2)A100.
设A是n阶方阵,A+E可逆,且f(A)=(E—A)(E+A)-1.证明:(1)[E+f(A)](E+A)=2E;(2)f[f(A)]=A.
设三阶方阵A,B满足关系式A-1BA=6A+BA,且A=,则B=_______。
随机试题
用Photoshop软件处理图片文件,界面如图6所示,当前状态下,操作可行的是()。
SLE患者典型的面部表现为
在石膏固定患者的护理中最重要的评估内容是
不属于痰饮致病特点的一项是
H公司是一家大型的家电制造企业。公司下设多家子公司,涵盖了多种家电产品的生产和销售。近年来由于市场竞争激烈,限制了企业的进一步发展,为此企业领导层决定对企业的发展战略进行重大调整。第一。公司决定调整经营范围,将市场竞争激烈、公司竞争力不强的洗衣机公司重组上
按照《建设工程施工专业分包合同(示范文本)》(GF一2003—0213)的规定,属于分包人工作与义务的有()。
下列项目中,免征营业税的有()。
某公司2014年销售额1000万元,销售净利率12%。其他有关资料如下:(1)2015年财务杠杆系数为1.5。(2)2014年固定经营成本为240万元,2015年保持不变。(3)所得税税率25%。(4)2014年普通
现分多次用等量清水去冲洗一件衣服,每次均可冲洗掉上次所残留污垢的÷,则至少需要冲洗几次才可使得最终残留的污垢不超过初始时污垢的1%?()
【B1】【B6】
最新回复
(
0
)